$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

지하철 터널내의 객차 화재발생시 환기실 위치변화에 따른 화재특성의 수치적 연구
Numerical Predictions of Fire Characteristics of Passenger Train Fire in an Underground Subway Tunnel, Depending on Change of Location of Ventilation Facility 원문보기

한국화재소방학회 논문지= Fire science and engineering, v.22 no.5, 2008년, pp.1 - 8  

손봉세 (경원대학교 소방방재공학과) ,  장희철 (중앙대학교 기계공학부)

초록
AI-Helper 아이콘AI-Helper

본 연구의 목적은 지하철 터널에서 화재가 발생한 경우 역사와 환기실의 위치에 따른 화재특성을 수치적으로 분석하는데 있다. 이를 위해 피난거리, 피난시간 및 최악조건 화재가 발생한 2가지 시나리오를 선정하고, 환기실 위치 변경에 따른 시간별 화재상황에 대한 터널내의 시류 및 열환경을 분석하였다. 화재해석을 위해 FLUENT v.6.3.26을 이용하였으며, 난류모델은 표준 k-${\varepsilon}$ 모델을 사용하였다. 경우에 따른 터널 내 일산화탄소의 농도 분포, 온도분포 및 속도분포의 결과를 분석하였고 본 연구의 결과는 지하철 역사 및 터널 설계시 최적의 방재 및 환기시스템을 구축하는데 기여할 것으로 생각된다.

Abstract AI-Helper 아이콘AI-Helper

The study is to perform numerical analysis of train fire characteristics in an underground subway tunnel, depending the different locations of ventilation facility. To study the characteristics of train fire, two kinds of worst-case scenarios are selected, based on escape distance, escape time, and ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 26, a heat flow analysis program, was used. For boundary conditions, CFD analysis was conducted considering the wind amount applied to real subways, ventilation and smoke control method, which are actually applied or applicable to the current subway systems, fire sizes, and fire locations based on the experiments. In case that two ventilation rooms close to the subway station are installed inside the subway building, it is evaluated that it would save construction costs, and it is found that the smoke control would be improved against the heat, CO, and flow velocity generated in case of fire.
  • Therefore, to respond to such problems, the current new subway stations are designed to be connected with the ventilation rooms to respond faster to various situations. Therefore, in this study numerical analysis was conducted on a case where a running train was caught fire and stoped in the middle of a tunnel to estimate fire characteristics according to change in the location of the ventilation room by connecting the subway station and the ventilation room to build an optimized fire prevention and ventilation system when designing a subway station or a tunnel. To analyze fire characteristics, two scenarios on the worst fire conditions on available escape distance and time were selected and trends and thermal environments at the tunnel were analyzed at each time when fire developed.
  • This study anticipated fire development against the worst-case scenarios of available escape distance, tim,e and fire location in order to build fire prevention and ventilation systems when designing subway stations and tunnels. In order to analyze fire prevention, ventilation and evacuation simulation, FLUENT V6.
  • Therefore, in this study numerical analysis was conducted on a case where a running train was caught fire and stoped in the middle of a tunnel to estimate fire characteristics according to change in the location of the ventilation room by connecting the subway station and the ventilation room to build an optimized fire prevention and ventilation system when designing a subway station or a tunnel. To analyze fire characteristics, two scenarios on the worst fire conditions on available escape distance and time were selected and trends and thermal environments at the tunnel were analyzed at each time when fire developed.

대상 데이터

  • It was set that fire took place at a passenger vehicle (the first cabin to the train movement direction) under the worst condition considering the available escape distance and time, and the maximum caloric value 15 MW was designated according to the demonstration results conducted in Europe. In the demonstration, an actual German IC train vehicle (steel vehicle) was used, and its material (stainless steel) was similar to domestic subway vehicles. It was set that it took 1,224 seconds for fire to reach its maximum caloric value after fire occurred and thermal units generated over time are shown in Figure 3, using the formula of Power Law Relation11).

이론/모형

  • The software used in this study is FLUENT (version 6.3.26)4) developed by ANSYS. INC in the USA and useful to analyze 3D or 2D flow velocity, distribution of temperature, pressure and density, which cannot be identified with 1D flow analysis since it is 3D flow analysis code, simulating flow movement and heat transmission in various shapes of models.
본문요약 정보가 도움이 되었나요?

참고문헌 (11)

  1. S.-R. Lee, C.-I. Kim, and H.-S. Ryou, "A Numerical Study of an Effect of the Aspect Ratio on Smoke Movement in Funnel Fires", Korean Institute of Fire Science and Engineering, Vol.15, No.1, pp.1-6(2001) 

  2. J.Y. Jeong, H.S. Ryou, and G.B. Homg, "A Numerical Study of Smoke Movement with Radiation in Atrium Fires", Korean Institute of Fire Science and Engineering, Vol.15, No.1, pp.7-15(2001) 

  3. W.-C. Park, "A Numerical Simulation of Smoke Control in Daegu Subway Stations II. Air Flowrate of Extraction System", Korean Institute of Fire Science and Engineering, Vol.17, No.4, pp.105-110 (2003) 

  4. H.-C. Chang, T.-G. Kim, W.-H. Park, and D.-H. Kim, "Study on Heat and Smoke Behavior due to the Natural Wind and the Forcef Smoke Ventilation for the Fire in an Unerground Subwal Station", Korean Institute of Fire Science and Engineering, Vol.19, No.1, pp.80-86(2005) 

  5. H.-C. Chang, T.-G. Kim, W.-H. Park, and B.-S. Son, "Study on Fire Characteristics for Different Exhaust Fan Operating Conditions in Subway Station", Korean Institute of Fire Science and Engineering Fall Conference, pp.234-240(2005) 

  6. W.-H. Park, D.-H. Kim, H.-C. Chang, and T.-G. Kim, "Experiments and Numerical Study for Analysis of Heat and Smoke Behavior in Case of Fire at a Platform of Subway Station (1) - Experimental Approach -", Korean Institute of Fire Science and Engineering, Vol.20, No.3, pp.9-14(2006) 

  7. H.-C. Chang, T.-G. Kim, W.-H. Park, and D.-H. Kim, "Experiments and Numerical Study for Analysis of Heat and Smoke Behavior in Case of Fire at a Platform of Subway Station (2) - Numerical Approach -", Korean Institute of Fire Science and Engineering, Vol.20, No.3, pp.15-20(2006) 

  8. M.-B. Kim and B.-G. Choi, "Experimental Study on Smoke Dissipation Using Reduced Model", Korean Institute of Fire Science and Engineering, Vol.22, No.2, pp.49-56(2008) 

  9. ANSYS Co., "FLUENT Ver.6.3.26"(2007) 

  10. B.E. Launder and D.B. Spalding, "Lectures in Mathematical Models of Turbulence", Academic press, London, England(1972) 

  11. National Fire Codes, "Guide for Smoke Movement System in Malls, Atria and Large Area", NFPA 92B, 2005 edition(2005) 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로