$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

암세포주와 공동 배양된 인간 지방 조직 유래 중간엽 줄기 세포의 유전자 발현 분석
Analysis of Global Gene Expression Profile of Human Adipose Tissue Derived Mesenchymal Stem Cell Cultured with Cancer Cells 원문보기

생명과학회지 = Journal of life science, v.21 no.5 = no.133, 2011년, pp.631 - 646  

김종명 (부산대학교 의학전문대학원) ,  유지민 (부산대학교 의학전문대학원) ,  배용찬 (부산대학교 의학전문대학원) ,  정진섭 (부산대학교 의학전문대학원)

초록
AI-Helper 아이콘AI-Helper

중간엽 줄기 세포는 다분화능을 가지고 있으며 골수, 지방, 태반, 치아속질, 윤활막, 편도 및 가슴샘 등 인체의 다양한 조직에서 분리된다. 중간엽 줄기세포는 조직의 항상성을 조절하며 다분화능, 분리와 조작의 용이함, 암세포로의 화학주성면역 반응 조절 등의 특징을 가지고 있어서 재생 의학, 암 치료 및 식대주 질환(GVHD) 등에 이용할 수 있는 세포치료제로 주목 받고 있다. 하지만 주위 세포와 조직을 지지하고 조절하는 특징과 관련하여 중간엽 줄기세포가 혈관 생성을 촉진하고 성장인자를 분비하며 암세포를 공격하는 면역 반응을 억제함으로써 암의 진행을 촉진시킨다는 사실 또한 보고 되고 있다. 이러한 사실들로 인해 중간엽 줄기세포의 임상 적용이 제한되고 있다. 본 연구에서는 어떠한 기전을 통해서 중간엽 줄기세포가 암의 진행을 촉진하는 지지 세포로 기능하는지를 밝히기 위해서 인체 지방 조직에서 유래한 중간엽 줄기세포를 두 개의 암세포주(H460, U87MG)와 각각 공동 배양하고 microarray를 이용해서 암세포와 공동 배양되지 않은 중간엽 줄기세포와 유전자의 발현을 비교하였다. 두 암세포주와 공동배양에서 공통적으로 2배 이상 차이 나는 유전자를 DAVID (Database for Annotation, Visualization and Integrated Discovery)와 PANTHER (Protein ANalysis THrough Evolutionary Relationships)를 이용해 분석하였으며 생물학적 과정, 분자적 기능, 세포의 구성 성분, 단백질의 종류, 질병과 인체 조직 그리고 신호전달에 관련된 정보를 획득하였다. 이를 통해서 암세포는 중간엽 줄기세의 분화, 증식, 에너지 대사, 세포의 구조 및 분비기능을 조절하여 유전자의 발현 양상을 암 연관 섬유모세포(cancer associated fibroblast)와 유사한 세포로 변형 시킨다는 사실을 알 수 있었다. 본 연구의 결과는 중간엽 줄기세포를 이용한 임상 치료제의 효과와 안정성을 개선하는데 응용될 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

Mesenchymal stem cells (MSC) are multipotent and can be isolated from diverse human tissues including bone marrow, fat, placenta, dental pulp, synovium, tonsil, and the thymus. They function as regulators of tissue homeostasis. Because of their various advantages such as plasticity, easy isolation a...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • To analysis the influence of cancer cells to global gene expression of ASCs, CM-Dil labeled ASCs were co-cultured with GFP-positive H460 or U87MG. After three days of co-culture, ASCs were sorted by FACS (Fig. 2) and gene expression was quantified using microarray analysis in comparison with control ASCs, which were not co-cultured with cancer cells. We only focused on the genes, which had more than 2-fold difference in expression, compared to control and had same direction of expressional changes in both ASCs co-cultured with H460 (ASC-H) and ASCs co-cultured with U87MG (ASC-U) to study the general characteristics of expression profile.
  • In this study, to get insight how cancer cells manipulate MSCs to utilize its tumor promoting activity, we obtained gene expression data from adipose tissue derived MSC (ASC) co-cultured with cancer cells through whole genome expression analysis using gene chip assay. Differentially expressed transcripts compared to those of ASC cultured alone were analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) version 6.
  • In this study, we used microarray and comparative gene expression analysis by a differential clustering approach to investigate the influence of cancer cells on phenotypic changes of MSCs leading promotion of malignancy.
  • Balb/C nude mice at 7 weeks of age were purchased from the Laboratory Animal Center of Seoul, Korea. The animals were housed in micro-isolator cages under sterile conditions, and observed for at least 1 week in order to ensure proper health prior to the initiation of the study. Lighting, temperature, and humidity were centrally controlled and recorded daily.

데이터처리

  • Comparisons between groups were analyzed via Student’s t-tests.

이론/모형

  • In this study, to get insight how cancer cells manipulate MSCs to utilize its tumor promoting activity, we obtained gene expression data from adipose tissue derived MSC (ASC) co-cultured with cancer cells through whole genome expression analysis using gene chip assay. Differentially expressed transcripts compared to those of ASC cultured alone were analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) version 6.7 and Protein ANalysis THrough Evolutionary Relationships (PANTHER) version 7 [18,31]. Expression profiles of ASCs were categorized to functionally related groups in diverse level of cell and molecular biology and its significances were interpreted.
본문요약 정보가 도움이 되었나요?

참고문헌 (52)

  1. Alhadlaq, A. and J. J. Mao. 2004. Mesenchymal stem cells: isolation and therapeutics. Stem Cell Dev. 13, 436-448. 

  2. Bagley, R. G., W. Weber, C. Rouleau, M. Yao, N. Honma, S. Kataoka, I. Ishida, B. L. Roberts, and B. A. Teicher. 2009.Human mesenchymal stem cells from bone marrow express tumor endothelial and stromal markers. Int. J. Oncol. 34, 619-627. 

  3. Bergfeld, S. A. and Y. A. DeClerck. 2010. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 29, 249-261. 

  4. Blobe, G. C., P. S. William, and H. F. Lodish. 2002. Role of Transforming Growth Factor $\beta$ in Human Disease. N. Engl. J. Med. 342, 1350-1358. 

  5. Casas-Tinto, S., M. Gomez-Velazquez, B. Granadino, and P. Fernandez-Funez. 2008. FoxK mediates TGF-beta signalling during midgut differentiation in flies. J. Cell Biol. 183, 1049-1060. 

  6. Chen, W., W. Jin, N. Hardegen, K. J. Lei, L. Li, N. Marinos, G. McGrady, and S. M. Wahl. 2003. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875-1886. 

  7. Chiarugi, V., L. Magnelli, and M. Cinelli. 1997. Complex interplay among apoptosis factors: RB, p53, E2F, TGF-beta, cell cycle inhibitors and the bcl2 gene family. Pharmacol. Res. 35, 257-261. 

  8. Chou, Y. T., H. Wang, Y. Chen, D. Danielpour, and Y. C. Yang. 2006. Cited2 modulates TGF-beta-mediated upregulation of MMP9. Oncogene 25, 5547-5560. 

  9. Colombo, M. P. and S. Piconese. 2007. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat. Rev. Cancer 7, 880-887. 

  10. Dennis, J. E. and P. Charbord. 2002. Origin and differentiation of human and murine stroma. Stem Cells 20, 205-214. 

  11. Dreuw, A., H. M. Hermanns, R. Heise, S. Joussen, F. Rodriguez, Y. Marquardt, F. Jugert, H. F. Merk, P. C. Heinrich, and J. M. Baron. 2005. Interleukin-6-type cytokines upregulate expression of multidrug resistance-associated proteins in NHEK and dermal fibroblasts. J. Invest. Dermatol. 124, 28-37. 

  12. Dudley, A. C., S. C. Shih, A. R. Cliffe, K. Hida, and M. Klagsbrun. 2008. Attenuated p53 activation in tumour-associated stromal cells accompanies decreased sensitivity to etoposide and vincristine. Br. J. Cancer 99, 118-125. 

  13. Erdogan, M., A. Pozzi, N. Bhowmick, H. L. Moses, and R. Zent. 2008. Transforming growth factor-beta (TGF-beta) and TGF-beta-associated kinase 1 are required for R-Ras-mediated transformation of mammary epithelial cells. Cancer Res. 68, 6224-6231. 

  14. Franco, O. E., M. Jiang, D. W. Strand, J. Peacock, S. Fernandez, R. S. Jackson 2nd, M. P. Revelo, N. A. Bhowmick, and S. W. Hayward. 2011. Altered TGF-{beta} Signaling in a Subpopulation of Human Stromal Cells Promotes Prostatic Carcinogenesis. Cancer Res. [Epub ahead of print] 

  15. Gerlo, S., G. Haegeman, and W. Vanden Berghe. 2008. Transcriptional regulation of autocrine IL-6 expression in multiple myeloma cells. Cell Signal. 20, 1489-1496. 

  16. Giannelli, G. and S. Antonaci. 2000. Biological and clinical relevance of Laminin-5 in cancer. Clin. Exp. Metastasis. 18, 439-443. 

  17. Guo, S., M. Liu, and R. R. Gonzalez-Perez. 2010. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim. Biophys. Acta. 1815, 197-213. 

  18. Huang, da. W., B. T. Sherman, and R. A. Lempicki. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57. 

  19. Imamura, T., T. Manabe, G. Ohshio, Z. H. Wang, K. Yamaki, T. Yoshimura, H. Suwa, and M. Imamura. 1995. Immunohistochemical staining for type IV collagen and laminin in the stroma of human pancreatic cancer. Int. J. Pancreatol. 18, 95-99. 

  20. Kayamori, K., K. Sakamoto, T. Nakashima, H. Takayanagi, K. Morita, K. Omura, S. T. Nguyen, Y. Miki, T. Iimura, A. Himeno, T. Akashi, H. Yamada-Okabe, E. Ogata, and A. Yamaguchi. 2010. Roles of interleukin-6 and parathyroid hormone-related peptide in osteoclast formation associated with oral cancers: significance of interleukin-6 synthesized by stromal cells in response to cancer cells. Am. J. Pathol. 176, 968-980. 

  21. Kebriaei, P. and S. Robinson. 2011. Treatment of graft-versus- host-disease with mesenchymal stromal cells. Cytotherapy [Epub ahead of print]. 

  22. Khakoo, A. Y., S. Pati, S. A. Anderson, W. Reid, M. F. Elshal, I. I. Rovira, A. T. Nguyen, D. Malide, C. A. Combs, G. Hall, J. Zhang, M. Raffeld, T. B. Rogers, W. Stetler-Stevenson, J. A. Frank, M. Reitz, and T. Finkel. 2006. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J. Exp. Med. 203, 1235-1247. 

  23. Kim, B. G., H. J. An, S. Kang, Y. P. Choi, M. Q. Gao, H. Park, and N. H. Cho. 2011. Laminin-332-rich tumor microenvironment for tumor invasion in the interface zone of breast cancer. Am. J. Pathol. 178, 373-381. 

  24. Lee, G. and M. Piquette-Miller. 2001. Influence of IL-6 on MDR and MRP-mediated multidrug resistance in human hepatoma cells. Can. J. Physiol. Pharmacol. 79, 876-884. 

  25. Lee, M. Y., J. M. Ryu, S. H. Lee, J. H. Park, and H. J. Han. 2010. Lipid rafts play an important role for maintenance of embryonic stem cell self-renewal. J. Lipid Res. 51, 2082-2089. 

  26. Lee, R. H., B. Kim, I. Choi, H. Kim, H. S. Choi, K. T. Suh, Y. C. Bae, and J. S. Jung. 2004. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell. Physiol. Biochem. 14, 311-324. 

  27. Legaspi, A., M. Jeevanandam, H. F. Starnes Jr, and M. F. Brennan. 1987. Whole body lipid and energy metabolism in the cancer patient. Metabolism 36, 958-963. 

  28. Liu, Z. J., Y. Zhuge, and O. C. Velazquez. 2009. Trafficking and differentiation of mesenchymal stem cells. J. Cell Biochem. 106, 984-991. 

  29. Loeffler, M., J. A. Kruger, A. G. Niethammer, and R. A. Reisfeld. 2006. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J. Clin. Invest. 116, 1955-1962. 

  30. Loffler, D., K. Brocke-Heidrich, G. Pfeifer, C. Stocsits, J.Hackermuller, A. K. Kretzschmar, R. Burger, M. Gramatzki, C. Blumert, K. Bauer, H. Cvijic, A. K. Ullmann, P. F. Stadler, and F. Horn. 2007. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110, 1330-1333. 

  31. Mi, H., Q. Dong, A. Muruganujan, P. Gaudet, S. Lewis, and P. D. Thomas. 2010. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 38, D204-210. 

  32. Micke, P. and A. Ostman. 2005. Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy. Expert. Opin. Ther. Targets 9, 1217-1233. 

  33. Ohlund, D., C. Lundin, B. Ardnor, M. Oman, P. Naredi, and M. Sund. 2009. Type IV collagen is a tumour stroma- derived biomarker for pancreas cancer. Br. J. Cancer 101, 91-97. 

  34. Orimo, A. and R. A. Weinberg. 2006. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5, 1597-1601. 

  35. Ostman, A. and M. Augsten. 2009. Cancer-associated fibroblasts and tumor growth--bystanders turning into key players. Curr. Opin. Genet. Dev. 19, 67-73. 

  36. Patocs, A., L. Zhang, Y. Xu, F. Weber, T. Caldes, G. L. Mutter, P. Platzer, and C. Eng. 2007. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N. Engl. J. Med. 357, 2543-2551. 

  37. Picinich, S. C., P. J. Mishra, P. J. Mishra, J. Glod, and D. Banerjee. 2007. The therapeutic potential of mesenchymal stem cells. Cell- & tissue-based therapy. Expert. Opin. Biol. Ther. 7, 965-973. 

  38. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147. 

  39. Rathinam, R. and S. K. Alahari. 2010. Important role of integrins in the cancer biology. Cancer Metastasis Rev. 29, 223-237. 

  40. Rozen, N., S. Ish-Shalom, A. Rachmiel, H. Stein, and D. Lewinson. 2000. Interleukin-6 modulates trabecular and endochondral bone turnover in the nude mouse by stimulating osteoclast differentiation. Bone 26, 469-474. 

  41. Russell, S. T. and M. J. Tisdale. 2002. Effect of a tumour- derived lipid-mobilising factor on glucose and lipid metabolism in vivo. Br. J. Cancer 87, 580-584. 

  42. Safford, K. M., K. C. Hicok, S. D. Safford, Y. D. Halvorsen, W. O. Wilkison, J. M. Gimble, and H. E. Rice. 2002. Neurogenic differentiation of murine and human adipose- derived stromal cells. Biochem. Biophys. Res. Commun. 294, 371-379. 

  43. Salazar, L. M. and A. M. Herrera. 2011. Fibrotic response of tissue remodeling in COPD. Lung [Epub ahead of print]. 

  44. Semba, S., Y. Kodama, K. Ohnuma, E. Mizuuchi, R. Masuda, M. Yashiro, K. Hirakawa, and H. Yokozaki. 2009. Direct cancer- stromal interaction increases fibroblast proliferation and enhances invasive properties of scirrhous-type gastric carcinoma cells. Br. J. Cancer 101, 1365-1373. 

  45. Studeny, M., F. C. Marini, J. L. Dembinski, C. Zompetta, M. Cabreira-Hansen, B. N. Bekele, R. E. Champlin, and M. Andreeff. 2004. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl. Cancer Inst. 96, 1593-1603. 

  46. Studeny, M., F. C. Marini, R. E. Champlin, C. Zompetta, I. J. Fidler, and M. Andreeff. 2002. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 62, 3603-3608. 

  47. Thomas, D. A. and J. Massague. 2005. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369-380. 

  48. Valtieri, M. and A. Sorrentino. 2008. The mesenchymal stromal cell contribution to homeostasis. J. Cell Physiol. 217, 296-300. 

  49. Wahl, S. M. and W. Chen. 2005. Transforming growth factor- beta-induced regulatory T cells referee inflammatory and autoimmune diseases. Arthritis Res. Ther. 7, 62-68. 

  50. Weigert, A., D. Sekar, and B. Brune. 2009. Tumor-associated macrophages as targets for tumor immunotherapy. Immunotherapy 1, 83-95. 

  51. Xing, F., J. Saidou, and K. Watabe. 2010. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 15, 166-179. 

  52. Yu, J. M., E. S. Jun, Y. C. Bae, and J. S. Jung. 2008. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev. 17, 463-473. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로