$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

본 연구는 들깻잎에 존재하는 Salmonella Typhimurium, Staphylococcus aureus에 대한 전해수의 저감효과를 분석하고 전해수로의 유기물의 유입과 들깻잎과 전해수의 비율이 전해수의 효과에 미치는 영향을 분석하고자 수행하였다. 들깻잎에 S. Typhimurium과 S. aureus을 7.0 $log_{10}CFU/g$ 정도로 접종 한 후 25, 50, 75, 100 ppm에서 1, 3, 5분 동안 각각 처리하여 시간과 농도에 따른 전해수 효과를 분석하였다. 또한 유기물이 전해수의 효과에 미치는 영향을 분석하기 위해 전해수에 첨가한 유기물 농도는 150, 300, 450, 600 ${\mu}g/L$ 수준이었고, 들깻잎과 전해수의 처리비율은 1:10, 1:25, 1:50이었다. 그 결과, S. Typhimurium과 S. aureus 모두 유효 염소 농도가 증가할수록 미생물 저감효과도 높아지는 경향을 보였으며(p<0.05) 두 균주 모두 100 ppm 처리에서 25 ppm 처리에서 보다 전해수의 저감효과가 약 0.7 $log_{10}CFU/g$ 정도 높게 나타났다(p<0.05). 하지만 처리 시간에 따른 효과는 없었다(p>0.05). 또한 전해수 중 유기물 함량이 증가할수록 S. Typhimurium과 S. aureus의 제어효과는 감소하였다(p<0.05). 유기물 600 ${\mu}g/L$ 첨가시 유기물 첨가를 하지 않았을 때에 비하여 S. Typhimurium은 1.10 $log_{10}CFU/g$, S. aureus는 0.8 $log_{10}CFU/g$의 전해수 효과가 감소하였다. 들깻잎과 전해수의 처리비율은 1:10으로 처리하였을 때 미생물 저감효과는 S. Typhimurium 0.57 $log_{10}CFU/g$, S. aureus 0.79 $log_{10}CFU/g$로 전해수에 의한 미생물저감 효과를 기대하기 어려웠다. 따라서 들깻잎에서 S. Typhimurium과 S. aureus의 효과적인 제어를 위해서는 전해수 처리전에 물 세척을 통하여 흙과 먼지를 제거하고 전해수 농도 100 ppm에서 1분 이상 처리해야한다. 또한 들깻잎과 전해수 비율은 1:25 이상 유지하는 것이 바람직할 것으로 사료된다.

Abstract

This study was conducted to evaluate the bactericidal activity of weakly alkalic electrolyzed water (WEW) against Salmonella Typhimurium and Staphylococcus aureus on perilla leaves. The influences of organic matter, inform of bovine serum, and the ratio of WEW to perilla leaves on bactericidal activity of WEW were also examined. Treatment of these organisms with 25, 50, 75, and 100 ppm WEW was performed for 1 min, 3 min and 5 min, respectively. Higher bactericidal activity was observed after a treatment with 100 ppm WEW compared to a treatment with 25 ppm WEW by 0.7 $log_{10}CFU/g$. The bactericidal activity of WEW also decreased with increasing bovine serum concentration. At the ratio of 10:1 (WEW: perilla leave), levels of Salmonella Typhimurium and Staphylococcus aureus were only reduced by 0.57 and 0.79 $log_{10}CFU/g$, respectively. It is suggested that the removal of organic debris prior to application of sanitizers and treatment above the ratio of 25:1 (WEW: perilla leave) is needed in order to improve WEW activity.

참고문헌 (25)

  1. Szabo EA, Simons L, Coventry MJ, Cole MB. Assessment of control measures to achieve a food safety objective of less than 100 CFU of Listeria monocytogenes per gram at point of consumption for fresh precut iceberg lettuce. J. Food Protect. 66: 256-264 (2003) 
  2. Kim C, Hung YC, Brachett RE. Efficacy of electrolyzed oxidizing( EO) and chemically modified water on different types of food-borne pathogens. Int. J. Food Microbiol. 61: 199-207 (2000) 
  3. Zhou B, Feng H, Luo Y. Ultrasound enhanced sanitizer efficacy in reduction of Escherichia coli O157:H7 population on spinach leaves. J. Food Sci. 74: 308-313 (2009) 
  4. Oomori T, Oka T, Inuta T, Arata Y. The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials. Anal. Sci. 16: 365-369 (2000) 
  5. Sekiya S, Ohmori K, Harii K, Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution. Artif. Organs 21: 32-38 (1997) 
  6. Jeong JW, Kim JH, Kim BS, Jeong SW. Characteristics of electrolyzed water manufactured from various electrolytic diaphragm and electolyte. Korean J. Food Preserv. 10: 99-105 (2003) 
  7. Abadias M, Usall J, Oliveira M, Alegre I, Vinas I. Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally-processed vegetables. Int. J. Food Microbiol. 123: 151-158 (2008) 
  8. Ayebath B, Hung YC. Electrolyzed water and its corrosiveness on various surface materials commonly found in food processing facilities. J. Food Process Eng. 28: 247-264 (2005) 
  9. Huang YR, Hung YC, Hsu SY, Huang YW, Hwang DF. Application of electrolyzed water in the food industry. Food Control 19: 329-345 (2008) 
  10. McPherson LL. Understanding ORPs in the disinfection process. Water Eng. Manag. 140: 29-31 (1993) 
  11. Marriott NG, Gravani RB. Principles of Food Sanitation. 5th ed. Springer, New York, NY, USA. pp. 149-151 (2006) 
  12. Park EJ, Alexander E, Taylor GA, Costa R, Kang DH. The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on green onions and tomatoes with different organic demands. Food Microbiol. 26: 386-390 (2009) 
  13. Beuchat LR, Farbar JM, Garrett EH, Harris LJ, Parish ME, Suslow TV, Busta FF. Standardization of a method to determine the efficacy of sanitizers in inactivating human pathogenic microorganisms on raw fruits and vegetables. J. Food Protect. 64: 1079-1084 (2001) 
  14. Ministry of Health & Welfare. Report of Korea National Health & Nutrition Examination Survey. Available from: http://knhanes.cdc.go.kr/. Accessed Dec. 20, 2011. 
  15. Guentzel JL, Lam KL, Callan MA, Emmons SA, Dunham VL. Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiol. 25: 36-41 (2008) 
  16. Koseki S, Yoshida K, Kamitani Y, Itoh K. Efficacy of acidic electrolyzed water for microbial decontamination of cucumbers and strawberries. J. Food Protect. 61: 1247-1251 (2004) 
  17. MEST. Food Safety Guideline for School Food Service. Ministry of Education, Science and Technology, Seoul, Korea. p. 35 (2004) 
  18. Kennedy E, Meyers L, Layden W. The 1995 Dietary Guidelines for America: An Overview. J. Am. Diet. Assoc. 96: 234-237 (1996) 
  19. Kim YG, Kim TW, Ding T, Oh DH. Effect of electrolyzed water and citric acid on quality enhancement and microbial inhibition in head lettuce. Korean J. Food Sci. Technol. 41: 578-586 (2009) 
  20. Choi JW, Park SY, Yeon JH, Lee MJ, Chung DH, Lee KH, Kim MG, Lee DH, Kim KS, Ha SD. Microbial contamination levels of fresh vegetables distributed in markets. Korean J. Fd. Hyg. Safety 20: 43-47 (2005) 
  21. Food and Drug Administration. Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards of Leafy Greens; Draft Guidance. Available from: http://www.fda.gov/Food/Guidance- ComplianceRegulatoryInformation/GuidanceDocuments/ProduceandPlanProducts/ ucm174200.html. Accessed Jan. 15, 2010. 
  22. Centers for Disease Control and Prevention. Update on Multi-State Outbreak of E. coli O157:H7 Infections From Fresh Spinach, October 6, 2006. Available from: http://www.cdc.gov/ecoli/2006/september/updates/100606.html. Accessed Feb. 20, 2010. 
  23. Patel J, Sharma M. Differences in attachment of Salmonella enteric serovars to cabbage and lettuce leaves. Int. J. Food Microbiol. 139: 41-47 (2010) 
  24. Kim SH, Kim JS, Choi JP, Park JH. Prevalence and frequency of food-borne pathogens on unprocessed agricultural and marine products. Korean J. Food Sci. Technol. 38: 594-598 (2006) 
  25. Kim JS, Bang OK, Chang HC. Examination of microbiological contamination of ready-to-eat vegetable salad. J. Fd. Hyg. Safety 19: 60-65 (2004) 

이 논문을 인용한 문헌 (1)

  1. Shim, Won-Bo ; Lee, Chae-Won ; Jeong, Myeong-Jin ; Kim, Jeong-Sook ; Ryu, Jae-Gee ; Chung, Duck-Hwa 2014. "An Investigation of the Hazards Associated with Cucumber and Hot Pepper Cultivation Areas to Establish a Good Agricultural Practices (GAP) Model" 한국식품과학회지 = Korean journal of food science and technology, 46(1): 108~114 

DOI 인용 스타일