$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Gate All Around Metal Oxide Field Transistor: Surface Potential Calculation Method including Doping and Interface Trap Charge and the Effect of Interface Trap Charge on Subthreshold Slope 원문보기

Journal of semiconductor technology and science, v.13 no.5, 2013년, pp.530 - 537  

Najam, Faraz (School of Electrical Engineering, Korea University) ,  Kim, Sangsig (School of Electrical Engineering, Korea University) ,  Yu, Yun Seop (Department of Electrical, Electronic and Control Engineering and IITC, Hankyong National University)

Abstract AI-Helper 아이콘AI-Helper

An explicit surface potential calculation method of gate-all-around MOSFET (GAAMOSFET) devices which takes into account both interface trap charge and varying doping levels is presented. The results of the method are extensively verified by numerical simulation. Results from the model are used to fi...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The scaling theory presented in [2] investigates design constraints of GAAMOSFET devices. The study determines device dimensions including silicon channel radius R and dielectric thickness tox (essential in controlling the SCEs inherent in the device) necessary to maintain an acceptable subthreshold slope (SS) performance of the device. However, this scaling scheme is for ideal surrounding gate devices; the theory neglects the impact of interface trap charge on GAAMOSFET device SS performance.

이론/모형

  • The model is iterative and does not consider channel doping concentration. In this study we present an explicit, non-iterative surface potential calculation-method that simultaneously takes into account interface trap states as well as channel-doping concentration in surface potential calculation of GAAMOSFET. The model is presented in section II and verified extensively by 3D numerical simulation.
  • The model is presented in section II and verified extensively by 3D numerical simulation. The results from the model are used to find the qualitative and quantitative impact of interface trap charge on SS degradation (Section III) (by using our previously reported extracted interface trap charge values) by employing the aforementioned scaling theory. Design constraints of GAAMOSFET device are investigated with emphasis on the effect of interface trap charge on device SS performance.
  • 2. Drift-Diffusion transport model, constant mobility model, Fermi-Dirac statistics, and Shockley-Read-Hall recombination model were used in the simulation. Fig.
  • Design constraints of GAAMOSFET device with emphasis on the impact of interface trap on devices’ SS were discussed, by employing a GAAMOSFET scaling theory.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. [Online]. Available: http://www.itrs.net/reports.html 

  2. C. P. Auth, and J. D. Plummer, "Scaling theory for cylindrical, fully depleted, surrounding-gate MOSFET's, IEEE Electron Device Lett., vol. 18, no. 2, pp. 74-76, Feb. 1997. 

  3. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. NewYork: Wiley-Interscience. 

  4. B. Iniguez, D. Jimenez, J. Roig, H. Hamid, L. Marsal, and J.Pallares,"Explicit continuous model for long-channel undoped surrounding gate MOSFETs," IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1868-1873, Aug. 2005. 

  5. M. Cheralathan, G. Iannaccone, E. Sangiorgi, and B. Iniguez, "Analytical drain current model reproducing advanced transport models in nanoscale cylindrical surrounding-gate (SRG) MOSFETs," J. Appl. Phys., vol. 110, no. 3, pp.034510, 2011. 

  6. Z. Chen, X. Zhou, G. Zhu, and S. Lin, "Interfacetrap modeling for silicon-nanowire MOSFETs," in IEEE International Reliability Physics Symposium (IRPS), May 2010, pp. 977-980. 

  7. Y. S. Yu, N. Cho, S. W. Hwang, and D. Ahn, "Implicit continuous current-voltage model for surrounding-gate metal-oxide-semiconductor Field-Effect Transistors Including Interface Traps," IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2520-2524, Aug. 2011. 

  8. B. H. Hong, N. Cho, S. J. Lee, Y. S. Yu, L. Choi, Y. C. Jung, K. H. Cho, K. H. Yeo, D. -W. Kim, G. Y. Jin, K. S. Oh, D. Park, S. -H Son, J.-S. Rieh, S. W. Hwang, "Subthreshold Degradation of Gate-all- Around Silicon Nanowire Field-Effect Transistors: Effect of Interface Trap Charge," IEEE Electron Device Letters, vol.32, no.9, pp.1179-1181, Sept. 2011. 

  9. M. Casse, K. Tachi, S. Thiele, and T. Ernst, "Spectroscopic charge pumping in Si nanowire transistors with a high-kappa/metal gate," Appl. Phys. Lett., vol. 96, no. 12, pp. 123506, 2010. 

  10. P. Magnone, F. Crupi, G. Giusi, C. Pace, E. Simoen, C. Claeys, L. Pantisano, D. Maji, V. Ramgopal Rao, and P. Srinivasan, "Noise in drain and gate current of MOSFETs with high-k gate stacks," IEEE Trans. Device Mater. Rel., vol. 9, no. 2, pp. 180-189, Jun. 2009. 

  11. G. M. Cohen, E. Cartier, S. Bangsaruntip, A. Majumdar, W. Haensch, L. M. Gignac, S. Mittal, and J. W. Sleight, "Interface state density measurements in gated p-i-n silicon nanowires as a function of the nanowire diameter," in Device Research Conference (DRC), June 2010, pp. 277- 278. 

  12. H. Sakamoto, K. Watanabe, H. Arimoto, M. Tanizawa, and S. Kumashiro, "A surface potential model for bulk MOSFET which accurately reflects channel doping profile expelling fitting parameters," in International Conference on Simulation of Semiconductor Processes and Devices(SISPAD) 2008, Sept. 2008, pp.273-276. 

  13. F. Najam, Y. S. Yu, K. H. Cho, K. H. Yeo, D.-W. Kim, G. Y. Jin, K. S. Oh, D. Park, S. Kim, and S. W. Hwang, "Interface trap density of elliptical gate-all-around silicon nanowire field-effect transistors with TiN gate: extraction and compact model," published to IEEE Trans. Electron Device, 2013. 

  14. G. M. Cohen, M. J. Rooks, J. O. Chu, S. E. Laux, P. M. Solomon, "Nanowire metal-oxidesemiconductor field effect transistor with doped epitaxial contacts for source and drain," Appl. Phys. Lett., vol. 90, no. 23, pp. 233110-233110-3, June 2007. 

  15. Bangzhi Liu, Yanfeng Wang, Tsung-ta Ho, Kok- Keong Lew, Sarah M. Eichfeld, "Oxidation of silicon nanowires for top-gated field effect transistors," J. Vac. Sci. Technol. A., vol. 26, no. 3, pp. 370-374, May/June 2008. 

  16. Sarah M Eichfeld, Tsung-Ta Ho, ChadMEichfeld, Alexana Cranmer, Suzanne E Mohney1, Theresa SMayer, and Joan M Redwin, "Resistivity measurements of intentionally and unintentionally template-grown doped silicon nanowire arrays," Nanotechnology, vol. 18, no. 31, pp. 315201, 2007. 

  17. J. He, F. Liu, W. Bian, J. Feng, J. Zhang, and X. Zhang, "An approximate carrier-based compact model for fully depleted surrounding-gate MOSFETs with a finite doping body," Semicond. Sci. Techno., vol. 22, no. 6, pp. 671-677, June 2007. 

  18. N. Cho, Y. S. Yu, and S. W. Hwang, "A compact model of fully-depleted surrounding-gate (SG) MOSFETs with a doping body," in IEEE 2008 Silicon nanoelectronics Workshop(SNW), June 2008, pp. 2-7. 

  19. J. G. Simmons and G. W. Taylor, "Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps," Phys. Rev. B, vol. 4, no. 2, pp. 502-511, 1971. 

  20. H. Jung, "The analysis of breakdown voltage for the double-gate MOSFET using the Gaussian doping distribution," J. Inf. Commun. Converg. Eng., vol. 10, pp. 200-204, 2012. 

  21. H.-J. Park, P. K. Ko, and C. Hu, "A Charge Sheet Capacitance Model of Short Channel MOSFET's for SPICE," IEEE Trans. Computer Aided Design, vol. 10, no.3, pp. 376-389, 1991. 

  22. BSIM-CMG, Technical Manual, 2012. 

  23. ATLAS ver. 5.10.2.R Manual, Silvaco Int., Santa Clara, CA, 2005. 

  24. S. Yao, T. H. Morshed, D. D. Lu, S. Venugopalan, W. Xiong, C. R. Cleavelin, A. M. Niknejad, and C. Hu, "Global parameter extraction for a multi-gate MOSFETs compact model," in 2010 IEEE International Conference on Microelectronic Test Structures (ICMTS), March 2010, pp. 194-197. 

  25. J. Yang, J. He, F. Liu, L. Zhang, F. Liu, X. Zhang, and M. Chan, "A compact model of silicon-based nanowire MOSFETs for circuit simulation and design," IEEE Trans. Electron Device, vol. 55, no. 11, pp. 2898-29060, Nov. 2008. 

  26. Y. S. Yu, N. Cho, S. W. Hwang, and D. Ahn, "Analytical Threshold Voltage Model Including Effective Conducting Path Effect (ECPE) for Surrounding-Gate MOSFETs (SGMOSFETs) with Localized Charges," IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 3176-3180, Nov. 2010. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로