$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] An Analytical Modeling and Simulation of Dual Material Double Gate Tunnel Field Effect Transistor for Low Power Applications 원문보기

Journal of electrical engineering & technology, v.9 no.1, 2014년, pp.247 - 253  

Arun Samuel, T.S. (Dept. of Electronics and Communication Engineering, Thiagarajar College of Engineering) ,  Balamurugan, N.B. (Dept. of Electronics and Communication Engineering, Thiagarajar College of Engineering)

Abstract AI-Helper 아이콘AI-Helper

In this paper, a new two dimensional (2D) analytical modeling and simulation for a Dual Material Double Gate tunnel field effect transistor (DMDG TFET) is proposed. The Parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions and analytical expres...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this paper, we propose a new analytical model for DMDG TFET structure which enhances the ION current during device operation. The aim of this work is, to study the potential benefits offered by the DMDG TFET by using parabolic approximation technique for the first time, which is simple and accurate.
  • current during device operation. The aim of this work is, to study the potential benefits offered by the DMDG TFET by using parabolic approximation technique for the first time, which is simple and accurate. The analytical model is developed using two dimensional solution of Poisson equation.

이론/모형

  • This model is used to calculate the surface potential and electric field distribution in the device under the two metal gates and the drain current IDS is derived from the electric field using Kane’s model.
  • The aim of this work is, to study the potential benefits offered by the DMDG TFET by using parabolic approximation technique for the first time, which is simple and accurate. The analytical model is developed using two dimensional solution of Poisson equation. This model is used to calculate the surface potential and electric field distribution in the device under the two metal gates and the drain current IDS is derived from the electric field using Kane’s model.
  • The tunnelling generation rate (G) can be calculated using Kane’s model.
  • The analytical model is based on two-dimensional Poisson’s equation solved using parabolic approximation.
본문요약 정보가 도움이 되었나요?

참고문헌 (25)

  1. Ramanathan Gandhi, Zhixian Chen, Navab Singh, "Vertical Si-Nanowire n-Type Tunneling FETs With Low Subthreshold Swing ( ${\leq}50mV$ /decade) at Room Temperature" IEEE Electron Device Lett., Vol. 32, No. 4, pp.437-439, Apr. 2011 

  2. Abhijit Mallik, Avik Chattopadhyay, "The Impact of Fringing Field on the Device Performance of a p-Channel Tunnel Field-Effect Transistor With a High- ${\kappa}$ Gate Dielectric", IEEE Trans. Electron Devices, Vol. 59, No. 2, pp.277-282, Feb.2012 

  3. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. Cambridge, U.K.: Cambridge Univ. Press, 1998. 

  4. W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, "Tunneling field-effecttransistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec," IEEE Electron Device Lett., Vol. 28, No. 8, pp. 743-745, Aug. 2007. 

  5. K. Gopalakrishnan, P.B.Griffin, and J.D.Plummer, "Impact ionization MOS (I-MOS) - Part I: Device and circuit simulations," IEEE Trans. Electron Devices, Vol. 52, No. 1, pp. 69-76, Jan. 2005. 

  6. Han-Ping Chen, Vincent C. Lee and Atsushi Ohoka, "Modeling and Design of Ferroelectric MOSFETs", IEEE Trans. Electron Devices, Vol. 58, No. 8, pp. 2401-2405, Aug.2011. 

  7. R. Asra, M. Shrivastava, K. V. R. M. Murali, R. K. Pandey, H. Gossner, and V. R. Rao, "A tunnel FET for VDD scaling below 0.6V with a CMOS comparable performance," IEEE Trans. Electron Devices, Vol. 58, No. 7, pp. 1855-1863, Jul. 2011. 

  8. A. Seabaugh and Q. Zhang, "Low-voltage tunnel transistors for beyond cmos logic," Proceedings of the IEEE, Vol. 98, No. 12, pp.2095-2110, Dec. 2010. 

  9. T.S. Arun Samuel, N.B. Balamurugana, S. Bhuvaneswari, D. Sharmilaa & K. Padmapriyaa, "Analytical modelling and simulation of single-gate SOI TFET for low-power applications" International Journal of Electronics, Published online on July.2013. DOI:10.1080/00207217.2013.796544 

  10. Anne S. Verhulst, William G. Vandenberghe, Karen Maex, and Guido Groeseneken, "Tunnel field-effect transistor without gate-drain overlap", Applied Physics Lett., Vol. 91, No. 5, pp. 053102-053105, Jul. 2007. 

  11. Q. Zhang, W. Zhao, and A. Seabaugh, "Low-subthreshold-swing tunnel transistors," IEEE Electron Device Lett., Vol. 27, No. 4, pp. 297-300, Apr. 2006. 

  12. J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, "Band-to-band tunneling in carbon nanotube field-effect transistors," Phys. Rev. Lett., Vol.93, No.19, pp.196, Nov. 2004. 

  13. K. K. Bhuwalka, J. Schulze, and I. Eisele, "Scaling the vertical tunnel FET with tunnel band gap modulation and gate work function engineering," IEEE Trans. Electron Devices, Vol. 52, No. 5, pp. 909-917, May.2005. 

  14. L. Wang, E. Yu, Y. Taur and P. Asbeck, "Design of tunneling field effect transistors based on staggered hetero junctions for ultra low power applications," IEEE Electron Device Lett., Vol. 31, No. 5, pp- 431-433, May.2010. 

  15. O. M. Nayfeh, C. N. Chleirigh, J. Hennessy, L. Gomez, J. L. Hoyt and D. A. Antoniadis, "Design of Tunneling Field-Effect Transisitors Using Strained-Silicon/Strained-Germanium Type-II Staggered Heterojunctions," IEEE Electron Device Lett., Vol. 29, No. 9, pp- 1074-1077, Sep. 2008. 

  16. J. Appenzeller, Y. M. Lin, J. Knoch, Z. H. Chen, and P. Avouris, "Comparing carbon nanotube transistors - The ideal choice: A novel tunneling device design," IEEE Trans. Electron Devices, Vol. 52, No. 12, pp. 2568-2576, Dec. 2005. 

  17. K. Boucart and A. M. Ionescu, "Double-gate tunnel FET with high- k gate dielectric," IEEE Trans. Electron Devices, Vol. 54, No. 7, pp. 1725-1733, Jul. 2007. 

  18. Sneh Saurabh and M. Jagadesh Kumar, "Novel Attributes of a Dual Material Gate Nanoscale Tunnel Field-Effect Transistor," IEEE Trans. Electron Devices, Vol. 58, No. 2, pp. 404-410, Feb. 2011. 

  19. Bardon MG, Neves HP, Puers R, and Hoof CV, Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions," IEEE Trans. Electron Devices, Vol.57, No.4, pp. 827-34, Apr.2010. 

  20. A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, "Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization," Journal of Applied Physics, Vol. 104, No. 6 pp. 064 514-1,Sep. 2008. 

  21. Min jin Lee,"Analytical Model of a single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs)," Solid-State Electronics, Vol. 63, pp. 110-114, Sep. 2011. 

  22. Rakhi Narang, Manoj Saxena, R. S. Gupta, and Mridula Gupta, "Assessment of ambipolar behaviour of a tunnel FET and Influence of Structural Modifications" Journal of Semiconductor Technology and Science, Vol.12, No.4, pp.482-491, Dec.2012. 

  23. E.O. Kane, "Zener tunneling in semiconductors," J.Phys. Chem. Solides, Vol.12, No.2, pp 181-188, Jan. 1960. 

  24. E.O. Kane, "Theory of tunneling," J. Appl. Phys., Vol. 32, No. 1, pp. 83-91, Jan.1961. 

  25. Sentaurus Device User Guide, Synopsys Inc., Version D-2010.03. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로