$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

국내산 자포니카와 인디카 품종 찹쌀전분의 호화특성과 분자구조

Gelatinization Properties and Molecular Structure of Waxy Rice Starches Isolated from Korean Japonica and Indica Cultivars

Abstract

Gelatinization properties and the molecular structure of Korean waxy rice starchesisolated from two japonica types, Sinseonchal, and Dongjinchal, as well as an indica type, Hangangchal 1 were investigated. Sinseonchal is preferred cultivar for making Korean traditional rice cakes and cookies. Sinseonchal starch was the highest in crude protein, amylopectin, damaged starch contents, and water binding capacity among the cultivars tested. The initial pasting temperature ($72.75^{\circ}C$), peak (360.54 RVU), breakdown (162.21 RVU) and setback (30.83 RVU) viscosities of Sinseonchal had the highest values (p Dongjinchal > Hangangchal 1. On the branch chain length distribution of amylopectin, the proportion of DP13-24 and DP25-36 showed reverse trends, with higher japonica type amylopectin in DP13-24.

질의응답 

키워드에 따른 질의응답 제공
핵심어 질문 논문에서 추출한 답변
아밀로펙틴의 분자구조
아밀로펙틴의 분자구조는 찹쌀 전분에 어떤 영향을 주는가?
찹쌀전분의 평균 중합도(degree of polymerization, DP), 평균 사슬길이(CL), 분지도, 사슬길이 분포 프로파일과 결정형 구조 등의 이화학적 특성을 결정

아밀로펙틴의 분자구조는 찹쌀전분의 평균 중합도(degree of polymerization, DP), 평균 사슬길이(CL), 분지도, 사슬길이 분포 프로파일과 결정형 구조 등의 이화학적 특성을 결정하는 중요한 역할을 담당한다(Wang YJ와 Wang L 2002, Park I 등 2013). 곡류 전분의 팽윤 현상은 아밀로펙틴 함량에 영향을 받으며(Tester RF와 Morrison WR 1990), 아밀로펙틴의 긴 사슬은 이중나선형 구조를 형성할 수 있으며 결정성 부분으로 밀집되어 있어 완전히 분리되기 위해서는 고온이 필요하므로 찰 전분입자는 깨어지기 어렵다(Vandeputte GE 등 2003).

전분의 이화학적 특성과 분자구조
대부분 전분의 이화학적 특성과 분자구조에 의해 결정되는 쌀과 쌀가루 제품의 특성은?
쌀과 쌀가루 제품의 식미와 가공품질은 대부분 전분의 이화학적 특성과 분자구조에 의해 결정된다.

그러므로 찹쌀의 수분흡수력은 멥쌀보다 크며(Jeong EG 등 2008) 쌀가루 제품의 텍스쳐 성질은 호화, 노화 및 리올로지 성질에 의해 기인된다. 쌀과 쌀가루 제품의 식미와 가공품질은 대부분 전분의 이화학적 특성과 분자구조에 의해 결정된다. 전분의 구조와 물리적 성질 사이의 관련성을 이해하는 것은 쌀가루 가공제품의 텍스쳐를 개선하는데 도움을줄 것이다.

찹쌀
아시아의 국가들에서 전통음식들인 떡, 과자, 스낵, 뻥튀기, 술과 국수 등을 찹쌀로 만든 이유는?
고 아밀로펙틴 함량에 의한 점착성과 구멍이 있는 텍스쳐를 갖는 높은 팽창력, 우수한 수분보유력과 냉동해동안정성 특성 때문이다

아시아의 국가들에서는 많은 전통음식들인 떡, 과자, 스낵, 뻥튀기, 술과 국수 등을 찹쌀로 만들고 있다(Wang YJ와 Wang L 2002). 그 이유는 고 아밀로펙틴 함량에 의한 점착성과 구멍이 있는 텍스쳐를 갖는 높은 팽창력, 우수한 수분보유력과 냉동해동안정성 특성 때문이다(Bao J 등 2004). 찹쌀 낟알은 멥쌀 낟알보다 반투명한 외관과 낮은 밀도가 특징이다(Juliano BO 1979).

질의응답 정보가 도움이 되었나요?

참고문헌 (51)

  1. AACC.2000. Approved Methods of the AACC 10th ed. Method 44-15A, 46-11A, 08-01, and 30-10. American Association of Cereal Chemists, St Paul, MN. USA 
  2. Bao J, Corke H, Sun M. 2004. Genetic diversity in the physicochemical properties of waxy rice (Oryza sativa L) starch. J Sci Food Agric 84(11):1299-1306 
  3. Bertoft E, Koch K. 2000. Composition of chains in waxy-rice starch and its structural units. Carbohyd Polym 41(2):121-132 
  4. Chaisiricharoenkul J, Tongta S, Intarapichet KO. 2011. Structure and chemical and physicochemical properties of Job's tear (Coix lacryma-jobi L) kernels and flours. Suranaree J Sci Technol 18(2):109-122 
  5. Chang YH, Lin JH. 2007. Effects of molecular size and structure of amylopectin on the retrogradation thermal properties of waxy rice and waxy corn starches. Food Hydrocolloid 21(4):645-653 
  6. Chauhan F, Seetharaman K. 2013. On the organization of chains in amylopectin. Starch/Starke 65(3):191-199 
  7. Chung HJ, Liu Q, Lee L, Wei D. 2011. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloid 25(5):968-975 
  8. Chrastil J. 1987. Improved colorimetric determination of amylose in starches or flours. Carbohyd Res 159(1):154-158 
  9. Choi GC, Na H, Oh GS, Kim SK, Kim K. 2003. Physicochemical properties on Shinsun (waxy) and black rice starch. J Korean Soc Food Sci Nutr 32(7):954-959 
  10. Choi YH, Kang MY. 1999. Texture and retrogradation characteristics of Injeulmi made by different varieties of waxy rice. J Korean Soc Food Sci Nutr 28(4):837-844 
  11. Chung HJ, Han JA., Yoo B, Seib PA, Lim ST. 2008. Effects of molecular size and chain profile of waxy cereal amylopectin on paste rheology during retrogradation. Carbohyd Polym 71(3):365-371 
  12. Evers AD, Stevens DJ. 1985. Starch damage in Advances in Cereal Science and Technology, Vol. VII. (Pomeranz, Y. Ed.), pp.321-349, American Association of Cereal Chemists Inc., St. Paul, Minnesota, USA. 
  13. Gibson TS, Solah VA, McCleary BV. 1997. A procedure to measure amylose in cereal starch and flour with concanavaline A. J Cereal Sci 25(2):111-119 
  14. Gidley MJ, Bulpin PV. 1987. Crystallization of malto-oligosaccharides as models of the crystalline forms of starch: minimum chain-length requirement for the formation of double helices. Carbohyd Polym 13(2):295-315 
  15. Hanashiro I, Abe J, Hizukuri S. 1996. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohyd Res 283:151-159 
  16. Han XZ, HamakerBR. 2001. Amylopectin fine structure and rice starch paste breakdown. J Cereal Sci 34(3):279-284 
  17. Huang YC, Lai HM. 2014. Characteristics of the starch fine structure and pasting properties of waxy rice during storage. Food Chem 152:432-439 
  18. Ibanez AM, Wood DF, Yokoyama WH, Park IM,Tinoco MA, Hudson CA, McKenzie KS, Shoemaker CF. 2007. Viscoelastic properties of waxy and nonwaxy rice flours, their fat and protein-free starch, and microstructure of their cooked kernels. J Agr Food Chem 55(16):6761-6771 
  19. Jane J, Chen Y, Lee LF, McPherson AE, Wong KS, Radosavljevic M. 1999. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem 76(5):629-637 
  20. Jeong EG, Lee CK, Choi YH, Kim JT, Kim S,Son JR. 2008. Identification of chalkiness development of milled waxy rice grains with harvest times and the moisture contents. Korean J Crop Sci 53(1):58-63 
  21. Juliano BO. 1979. The chemical basis of rice grain quality in Proceeding of the workshop on chemical aspects of rice grain quality. pp. 73-74. International Rice Research Institute 
  22. Juliano BO, Villareal RM. 1987. Varietal differences in physicochemical properties of waxy rice starch. Starch/Starke 39(9):298-301 
  23. Kim HS, Huber KC. 2010.Physicochemical properties and amylopectin fine structure of A- and B- type granules of waxy and normal soft wheat starch. J Cereal Sci 51(3):256-268 
  24. Kim K, Choi GC, Kang KJ, Lee YH, Kim SK. 1992. Molecular structural properties of waxy rice starch. Korean J Food Sci Technol 24(6):568-573 
  25. Kim SK, Shin MS. 1992. Physicochemical properties of defatted nonwaxy and waxy rice starches. Korean J Food Sci Technol 24(4):347-352 
  26. Lee MK, Kim JO, Shin MS. 2004. Properties of nonwaxy rice flours with different soaking time and particle sizes. Korean J Food Sci Technol 36(2):268-275 
  27. Lin JH, Singh H, Ciao JY, Kao WT, Huang WH, Chang YH. 2013. Genotype diversity in structure of amylopectin of waxy rice and its influence on gelatinization properties. Carbohyd Polym 92(2):1858-1864 
  28. Mahmood T, Turner Ma, Stoddar FL. 2007. Comparison of methods for colorimetric amylose determination in cereal grains. Starch/Starke 59(8):357-365 
  29. Manners DJ. 1989. Recent developments in our understanding of amylopectin structure. Carbohyd Polym 11(2):87-112 
  30. Medcalf MD, Gilles KA. 1965. Wheat starches. I. Comparison of physicochemical properties. Cereal Chem 42:558-568 
  31. Nishihara MT. 1996. Molecular origin for the thermal stability of waxy-rice (Kogane) starch. Starch/Starke 48(11):414-417 
  32. Park JD, Choi BK, Kum JS, Lee HY. 2007. Quality and pasting properties of traditional olbyeossal. Korean J Food Preserv 14(3):276-280 
  33. Park IM, Ibanez AM, Zhong F, Shoemaker CF. 2007. Gelatinization and pasting properties of waxy and non-waxy rice starches. Starch/Starke 59(8):388-396 
  34. Park I, Kim SH, Chung IM, Shoemaker CF. 2013. Effect of amylopectin long chains on measured amyloe content and their correlation with pasting properties. Starch/Starke 65(3): 227-235 
  35. Sasaki T, Kohyama K, Suzuki Y, Okamoto K, Noel TR, Ring S G. 2009. Physicochemical characteristics of waxy rice starch influencing the in vitro digestibility of a starch gel. Food Chem 116(1):137-142 
  36. Schoch TJ. 1964. Swelling power and solubility of granular starches. In Methods in Carbohydrate Chemistry. Vol IV, pp 106-108, (Ed) Whistler RL, Academic Press 
  37. Simsek S, Whitney K, Ohm JB. 2013. Analysis of cereal starches by high-performance size exclusion chromatography. Food Anal Methods 6(1):181-190 
  38. Singh H, Lin JH, Huang WH, Chang YH. 2012. Influence of amylopectin structure on rheological and retrogradation properties of waxy rice starches. J Cereal Sci 56(2):367-373 
  39. Song J, Lee CK, Youn JT, Kim SL, Kim DS, Kim JH, Jeong EG, Suh SJ. 2008. Relationship among alkali digestive value, amylopectin fine structure and physical properties of cooked rice. Korean J Crop Sci 53(3):320-325 
  40. Song JY, Park JH, Shin M. 2011. The effects of annealing and acid hydrolysis on resistant starch level andthe properties of cross-linked RS4 rice starch. Starch/Starke 63(3):147-153 
  41. Song JY, Shin MS. 1998. Solubility patterns and gelatinization properties of waxy rice starches. J Korean Soc Agric Chem Biotechnol 41(7):516-521 
  42. Song YC, Cho JH, Lee JH, Kwak DY, Park NB, Yeo US, Kim CS, Jeon MG, Lee JY, Lee GH. Ha WG, Lee JS, Jung KH, Cho YH, Kang HW. 2013. A glutinous rice variety with multiple disease resistance 'Baegokchal'. Korean J Breeding Sci 45(1):31-37 
  43. Sung YM, Choi HC, Kang MY. 2000. Physicochemicalproperties of starch granules from thirteen glutinous rice varieties. Korean J Breeding 32(3):226-232 
  44. Tester RF, Morrison WR. 1990. Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chem 67(6): 558-563 
  45. Umemoto T, Nakamur Y, Satoh H, Terashima K. 1999. Differences in amylopectin structure between two rice varieties in relation to the effects of temperature during grain-filling. Starch/Starke 51(2):58-62 
  46. Vandeputte GE, Derycke V, Geeroms J, Delcour JA. 2003. Rice starches. II.Structural aspects provide insight into swelling and pasting properties. J Cereal Sci 38(2):53-59 
  47. Villareal CP, Juliano BO, Hizukuri S. 1993. Varietal differences in amylopectin staling of cooked waxy milled rices. Cereal Chem 70(6):753-758 
  48. Wang YJ, Wang L. 2002. Structures of four waxy rice starches in relation to thermal, pasting and textural properties. Cereal Chem 79(2):252-256 
  49. Wani AA, Singh P, Shah MA, Schweiggert-Weisz U, Gul K, Wani IA. 2012. Rice starch diversity: Effects on structural, morphological, thermal, and physicochemical properties- A review. Compr Rev Food Sci F 11(5):417-436 
  50. Yoo SH, Lee CS, Kim BS, Shin M. 2012. The properties and molecular structures of gusiljatbam starch compared to those of acorn and chestnut starches. Starch/Starke 64(5): 339-347 
  51. Zhu LJ, Liu Q, Sang Y, Gu MH, Shi YC. 2010. Underlying reasons for waxy rice flours having different pasting properties. Food Chem 120(1):94-100 

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

이 논문 조회수 및 차트

  • 상단의 제목을 클릭 시 조회수 및 차트가 조회됩니다.

DOI 인용 스타일

"" 핵심어 질의응답