최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국과학교육학회지 = Journal of the Korean association for science education, v.34 no.8, 2014년, pp.703 - 718
맹승호 (강원대학교) , 이기영 (강원대학교) , 박영신 (조선대학교) , 이정아 (서울대학교) , 오현석 (강원대학교)
This study sought to investigate learning progressions for astronomical systems which synthesized the motion and structure of Earth, Earth-Moon system, solar system, and the universe. For this purpose we developed ordered multiple-choice items, applied them to elementary and middle school students, ...
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
천체의 운동과 그 구조를 이해하기위해 시스템 모델링 및 그와 관련된 시슽템적 사고가 중요한 이유는 무엇인가? | 또한, 시스템 사고는 시스템 구성요소들에 대한 분석과 종합, 그리고 시스템적 실행이 위계적 관계를 형성하며 순차적으로 발달한다(Ben-Zvi Assaraf & Orion, 2005; Orion & Basis, 2008)고주장하였다. 천체의 운동 및 구조와 관련된 현상들은 작은 규모에서 형성된 부분적인 결과를 종합하여 전체적인 큰 규모에 해당하는 설명 모델로서 파악되는 경우가 많으며, 여러 천체들의 역학적 관계가 시스템적으로 이루어져 형성된다. 따라서 천체의 운동과 그 구조를 이해하기 위해서는 천문 시스템의 시스템적 특징을 모형화하는 시스템 모델링 및 그와 관련된 시스템적 사고가 중요하게 요구된다. | |
시스템 사고란 무엇인가? | 시스템 사고는 “전체 시스템을 구성하는 어느 한 부분의 작동이나 변화 또는 특정한 기능이 어떻게 전체 시스템에 영향을 주어 전체 시스템이 작동하게 되는지 이해하는 능력으로서, 시스템 작동 과정에서 서로 다른 각각의 요소들이 상호작용하는 것에 대한 판단과 의사결정, 시스템 분석, 시스템 평가 및 추상적인 추론 과정을 포함한다.”(NRC, 2010, p. | |
공간적 사고의 정의는 무엇인가? | 공간적 사고에 대한 중요한 보고서 Learning to Think Spatially (NRC, 2006)에서는 “공간에 대한 의미를 이해하는 공간적 개념, 사물의 공간적인 형태나 구조를 시각화하는 방식, 그리고 공간적 표현 방식을 활용하여 사물의 구조와 성질, 기능 등을 이해하고 설명하는 추론 과정까지 포함하는 종합적인 사고 능력”으로서 공간적 사고를 정의하고 있다(p. 3). |
Achieve, Inc. (2013). Next Generation Science Standards. Achieve Inc. On behalf of the twenty-six states and partners that collaborated on the NGSS.
AERA, APA, & NCME. (1999). Standards for educational and psychological testing. Washington, DC: AERA.
Alonzo, A. C., & Steedle J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93(3), 389-421.
Ben-Zvi Assaraf, O., & Orion, N. (2005). Development of system thinking skills in the context of Earth System education. Journal of Research in Science Teaching, 42, 518-560.
Ben-Zvi Assaraf, O., & Orion, N. (2010). System thinking skills at the elementary school level. Journal of Research in Science Teaching, 47, 540-563.
Berland, L.K., & McNeill, K.L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94, 765-793.
Black, P. & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education, 5, 7-74.
Black, P., Wilson, M., & Yao, S. Y. (2011). Road maps for learning: A guide to the navigation of learning progressions. Measurement: Interdisciplinary Research & Perspective, 9, 71-123.
Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd edition). New York, NY: Routledge.
Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. New York, NY: Springer.
Briggs, D. C., & Alonzo, A. C. (2012). The psychometric modeling of ordered multiple-choice item responses for diagnostic assessment with a learning progression. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 293-316). Rotterdam, The Netherlands: Sense Publishers.
Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33-63.
Corcoran, T., & Silander, M. (2009). Instruction in high schools: The evidence and the challenge. The Future of Children: America's High Schools, 19, 157-183.
Corcoran, T., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence based approach to reform. Consortium for Policy Research in Education Report #RR-63. Philadelphia, PA: Consortium for Policy Research in Education.
Duncan, R. G., Rogat, A. D., & Yarden, A. (2009). A learning progression for deepening students' understandings of modern genetics across the 5th-10th grades. Journal of Research in Science Teaching, 46, 655-674.
Duschl, R. A., & Grandy, R. (Eds.) (2008). Teaching scientific inquiry: Recommendations for research and implementation. Rotterdam, The Netherlands: Sense Purblishers.
Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47, 123-182.
Furtak, E. M. (2012). Linking a learning progression for natural selection to teachers' enactment of formative assessment. Journal of Research in Science Teaching, 49(9), 1181-1210.
Gotwals, A. W., & Songer, N. B. (2013). Validity evidence for learning progression-based assessment items that fuse core disciplinary ideas and science practices. Journal of Research in Science Teaching, 50, 597-626.
Ji, E., & Chae, S. (2000). Theory and practices of Rasch model. Seoul: Kyoyook-Kwahak-Sa.
Jin, H., & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49, 1149-1180.
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-174.
National Research Council (NRC). (2006). Learning to think spatially. Washington, DC: National Academies Press.
National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press
National Research Council. (2012). A framework for k-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50, 162-188.
Orion, N., & Basis, T. (2008). Characterization of High School Students' System Thinking Skills in the Context of Earth Systems. Presented in the 2008 NARST Annual Meeting. March, 2008. Baltimore, U.S.A.
Plummer, J. D. (2014). Spatial thinking as the dimension of progress in an astronomy learning progression. Studies in Science Education, 50(1), 1-45.
Plummer, J. D., & Krajcik, J. (2010). Building a learning progression for celestial motion: Elementary levels from an Earth-based perspective. Journal of Research in Science Teaching, 47(7), 768-787.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46, 632-654.
Seong, T. (2002). Validity and Reliability. Seoul: Hakjisa.
Seong, T., & Si, K. (2006). Reasearch Methodology. Seoul: Hakjisa.
Shea, N. A., & Duncan, R. G. (2013). From theory to data: The process of refining learning progressions. Journal of the Learning Sciences, 22, 7-32.
Songer, N. B., & Gotwals, A. W. (2012). Guiding explanation construction by children at the entry points of learning progressions. Journal of Research in Science Teaching, 49, 141-165.
Stevens, S., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47, 687-715.
Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, NJ: Lawrence Erlbaum Associates.
Wilson, M. (2009). Measuring progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46, 716-730.
Wilson, M. (2012). Responding to a challenge that learning progressions pose to measurement practice. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 317-343). Rotterdam, The Netherlands: Sense Publishers.
Wright, B. D., & Linacre, J. M. (1994). Reasonable mean-square fit value. Rasch Measurement Transactions, 8(3), 370.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.