$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

집단지성 원리를 적용한 과학관련 사회·윤리적 쟁점 수업 모형의 개발
Designing Collective Intelligence-based Instructional Models for Teaching Socioscientific Issues 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.34 no.6, 2014년, pp.523 - 534  

이현주 (이화여자대학교) ,  최윤희 (숭문중학교) ,  고연주 (이화여자대학교)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 과학관련 사회 윤리적 쟁점(SSI)과 집단지성과의 연관성을 고려하여, 집단지성 촉진 전략을 활용한 SSI 수업모형(CI기반 SSI 수업모형)을 현장 과학교사들과 협력적으로 개발하였다. 그리고, 수업모형 개발과정에서 참여 교사들이 SSI 수업에서 집단지성의 효과에 대해 어떻게 인식하는지를 살펴보고자 하였다. 본 연구에서 개발된 CI기반 SSI 수업모형은 SSI 수업에서 교사들이 추구하는 목적에 따라 크게 3개의 유형(발산적 모형, 탐색적 모형, 의사결정 모형)으로 나뉘며, 각 유형 당 2개씩 총 6개가 개발되었다. 첫째, 발산적 모형은 학생들이 주어진 SSI에 대한 의견이나 해결방안을 다양하게 발산해 보도록 하는데 초점을 둔 수업모형으로, 아이디어 생성 수업모형과 미래 상황 예측 수업모형이 해당된다. 둘째, 탐색적 모형은 문제를 둘러싸고 있는 다양한 입장들에 대해 탐색하여 SSI의 복잡성을 이해하는 데 초점을 둔 수업모형으로, 쟁점 탐색 수업모형과 실제 사례 탐색수업모형이 이 유형에 속한다. 셋째, 의사결정 모형은 주어진 SSI에 대해 다양한 입장을 이해하고 가장 합리적으로 집단의 의사결정을 하도록 의견을 수렴하고 조정하는데 초점을 둔 수업모형으로, 집단적 합의 수업모형과 대안 결정 수업모형이 해당된다. 참여교사들은 각 수업모형을 적용해본 결과 SSI 수업에서 집단지성의 원리를 강조한 것이 학생들의 참여도와 협력, 토론과 근거의 질을 높이는 데 기여했다고 보았다. 이를 위해서는 SSI 수업 도입 부분에서 문제해결을 위해 공유된 가치를 형성하는 과정, 개별적으로 자료를 수집할 수 있는 시간을 충분히 갖고 난 후 공유하는 과정, 개인적으로 자료를 수집하여 정리하고 공유할 수 있는 공간의 마련이 중요하다고 응답하였다.

Abstract AI-Helper 아이콘AI-Helper

This study aimed to develop collective intelligence (CI) based instructional models for teaching socioscientific issues on the basis of intimate collaboration with science teachers, and to investigate the participating teachers' perceptions on the effectiveness of the instructional models. Adapting ...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
본 연구에서 개발한 CI기반 SSI 수업모형은 무엇이 있는가? 본 연구에서 개발된 CI기반 SSI 수업모형은 SSI 수업에서 교사들이 추구하는 목적에 따라 크게 3개의 유형(발산적 모형, 탐색적 모형, 의사결정 모형)으로 나뉘며, 각 유형 당 2개씩 총 6개가 개발되었다. 첫째, 발산적 모형은 학생들이 주어진 SSI에 대한 의견이나 해결방안을 다양하게 발산해 보도록 하는데 초점을 둔 수업모형으로, 아이디어 생성 수업모형과 미래 상황 예측 수업모형이 해당된다. 둘째, 탐색적 모형은 문제를 둘러싸고 있는 다양한 입장들에 대해 탐색하여 SSI의 복잡성을 이해하는 데 초점을 둔 수업모형으로, 쟁점 탐색 수업모형과 실제 사례 탐색수업모형이 이 유형에 속한다. 셋째, 의사결정 모형은 주어진 SSI에 대해 다양한 입장을 이해하고 가장 합리적으로 집단의 의사결정을 하도록 의견을 수렴하고 조정하는데 초점을 둔 수업모형으로, 집단적 합의 수업모형과 대안 결정 수업모형이 해당된다. 참여교사들은 각 수업모형을 적용해본 결과 SSI 수업에서 집단지성의 원리를 강조한 것이 학생들의 참여도와 협력, 토론과 근거의 질을 높이는 데 기여했다고 보았다.
ADDIE 모형은 무슨 단계로 구성되어 있는가? 본 연구자는 CI기반 SSI 수업모형을 체계적으로 개발하기 위해 ADDIE 모형(Seels & Richey, 1994)을 적용하였다. ADDIE 모형은 분석(Analysis), 설계(Design), 개발(Development), 실행(Implementation) 그리고 평가(Evaluation)의 5단계로 구성되어 있다. ‘분석’ 단계 에서는 교사들이 SSI 교수와 관련해서 겪는 어려움, 학습자들이 SSI에 대한 의사결정을 할 때 당면하는 이슈들, SSI의 본질적 속성들을 선행 연구들을 통해 분석하였다.
SSI 교육은 무엇에 초점을 둔 교육인가? , 2005). SSI 교육은 미래 사회의 주체인 학생들이 과학· 기술을 올바르고 안전하게 사용하고, 관련 쟁점들에 대해 현명하게 대처할 수 있는 능력과 인성을 지닌 시민으로 성장할 수 있도록 하는데 초점을 두고 있어, ‘과학적 소양의 함양’이라는 과학 교육 목표에도 부합한다(Zeidler et al., 2005).
질의응답 정보가 도움이 되었나요?

참고문헌 (53)

  1. Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. New York, NY: Teachers College Press. 

  2. Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: Students' argumentation in group discussion on a socio-scientific issue. Research in Science Education, 38, 67-90. 

  3. Brown, J., & Isaacs, D. (2008). The world cafe: Awakening collective intelligence and committed action, In M. Tovey (Ed.). Collective intelligence: Creating a prosperous world at peace (pp. 47-54). Oakton, VA: Earth Intelligence Network. 

  4. Chang, H., & Lee, H. (2010). College students' decision-making tendencies in the context of socioscientific issues (SSI). Journal of Korean Association in Science Education, 30(7), 887-900. 

  5. Cho, H., & Choi, K. (1998). The necessities and current states of educating ethical characteristics of science. Journal of the Korean Association for Research in Science Education, 18(4), 559-570. 

  6. Choi, K., & Cho, H. (2002). The teaching/learning procedures and themes for ethical issues in science. Biology Education, 28(4), 408-417. 

  7. Connell, S., Fien, J., Lee, J., Sykes, H., & Yencken, D. (1999). 'If it doesn't directly affect you, you don't think about it': A qualitative study of young people's environmental attitudes in two Australian cities. Environmental Education Research, 5(1), 96-113. 

  8. Cross, R. T., & Price, R. F. (1996). Science teachers' social conscience and the role of controversial issues in the teaching of science. Journal of Research in Science Teaching, 33(3), 319-333. 

  9. Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students' argumentation skills about socioscientific issues in high school genetics. Research in Science Education, 40, 133-148. 

  10. Dori, Y. J., Tal, R. T., & Tsaushu, M. (2003). Teaching biotechnology through case studies: Can we improve higher order thinking skills of nonscience majors? Science Education, 87(6), 767-793. 

  11. Dreyfus, A., & Roth, Z. (1991). Twelfth-grade biology pupils' opinions on interventions of man in nature: Agreement, indifference and ambivalence. Journal of Research in Science Teaching, 28(1), 81-95. 

  12. Gan, Y., & Zhu, Z. (2007). A learning framework for knowledge building and collective wisdom advancement in virtual learning communities. Educational Technology & Society, 10(1), 206-226. 

  13. Hansen, K. H., & Olson, J. (1996). How teachers construe curriculum integration: The Science, Technology, Society (STS) movement as Bildung. Journal of Curriculum Studies, 28(6), 669-682. 

  14. Hogan, K. (2002). Small groups' ecological reasoning while making an environmental management decision. Journal of Research in Science Teaching, 39(4), 341-368. 

  15. Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive Science, 19, 265-288. 

  16. Jeong, E., & Kim, Y. (2000). Development of a value inquiry model in biology education. Journal of the Korean Association for Research in Science Education, 20(4), 582-598. 

  17. Leadbeater, C. (2008). We think: Mass innovation, not mass production. London: Profile Books. 

  18. Lee, H., & Chang, H. (2010). Exploration of experienced science teachers' personal practical knowledge of teaching socioscientific issues (SSI). Journal of Korean Association for Science Education, 30(3), 353-365. 

  19. Lee, H., & Witz, K. G. (2009). Science teachers' inspiration for teaching socio-scientific issues: Disconnection with reform efforts. International Journal of Science Education, 31, 931-960. 

  20. Lee, H., Chang, H., Choi, K., Kim, S., & Zeidler, D. L. (2012). Developing character and values for global citizens: Analysis of preservice science teachers' moral reasoning on socioscientific issues. International Journal of Science Education, 34(6), 925-953. 

  21. Lee, H., Yoo, J., Choi, K., Kim, S., Krajcik, J., Herman, B. C., & Zeidler, D. L. (2013). Socioscientific issues as a vehicle for promoting character and values for global citizens. International Journal of Science Education, 35(12), 2079-2113. 

  22. Lee, Y., & Lee, S. (2009). Conceptual design principles of collective intelligence. Journal of Educational Technology, 25(4), 213-239. 

  23. Levy, P. (1994). L'intelligence Collective: Pour une anthropologie de cyberspace. Paris: La Decouverte. 

  24. Means, M. L., & Voss, J. F. (1996). Who reasons well? Two studies of informal reasoning among children of different grade, ability, and knowledge levels. Cognition and Instruction, 14, 139-178. 

  25. Michaelson, L. K., Knignt, A. B., & Fink, L. D. (2002). Team-based learning: A transformative use of small group. Sterling: Greenwood Publishing Group Inc. 

  26. Millar, R. (2006). Twenty first century science: Insights from the design and implementation of a scientific literacy approach in school science. International Journal of Science Education, 28(13), 1499-1521. 

  27. Ministry of Education Science Technology (MEST). (2011). Korea national curriculum standards(2011-361). Seoul: MEST. 

  28. Mueller, M. P., & Zeidler, D. L. (2010). Moral-ethical character and science education: Ecojustice ethics through socioscientific issues (SSI). In D. Tippins, M. Mueller, M. van Eijck, & J. Adams (Eds.), Cultural studies and environmentalism: The confluence of ecojustice, place-based (science) education, and indigenous knowledge systems (pp. 105--128). New York, NY: Springer. 

  29. Partnership for the 21st Century Skills [P21]. (2009). A framework for 21st century learning. Washington, DC: P21. 

  30. Paulus, P. B., & Nijstad, B. A. (2003). Group creativity. New York, NY: Oxford university press. 

  31. Perkins, D. N., Farady, M., & Bushey, B. (1991). Everyday reasoning and the roots of intelligence. In J. F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning and education (pp. 83-105). Hillsdale, NJ: Erlbaum. 

  32. Ratcliffe, M. (1997). Pupil decision-making about socio-scientific issues within the science curriculum. International Journal of Science Education, 19(2), 167-182. 

  33. Reis, P., & Galvao, C. (2004). The impact of socio-scientific controversies in Portuguese natural science teachers'' conceptions and practices. Research in Science Education, 34, 153-171. 

  34. Roth, W. M. (2003). Scientific literacy as an emergent feature of collective human praxis. Journal of Curriculum Studies, 35(1), 9-23. 

  35. Roth, W. M., & Desautels, J. (2004). Educating for citizenship: Reappraising the role of science education. Canadian Journal of Science, Mathematics and Technology Education, 4(2), 149-168. 

  36. Roth, W. M., & Lee, S. (2004). Science education as/for participation in the community. Science Education, 88(2), 263-294. 

  37. Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas. Science Education, 88, 4-27. 

  38. Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42(1), 112-138. 

  39. Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37, 371-391. 

  40. Salomon, G. (1996). Studying novel learning environments as patterns of change. In S. Vosniadou, E. De Corte, R. Glaser & H. Mandl (Eds.), International perspectives on the design of technology-supported learning environments (pp. 363-378). Mahwah, NJ: L. Erlbaum Associates. 

  41. Seels, B. B., & Richey, R. C. (1994). Instructional technology: The definition and domains of the field. Washington, DC: Association for Educational Communications and Technology. 

  42. Simonneaux, L. (2001). Role-play or debate to promote students' argumentation and justification on an issue in animal transgenesis. International Journal of Science Education, 23(9), 903- 927. 

  43. Surowiecki, J. (2004). The wisdom of crowds: Why the many are smarter than the few and how collective wisdom shapes business, economies, societies and nations. New York: Random House. 

  44. Tal, R. T., & Hochberg, N. (2003). Reasoning, problem-solving and reflections: Participating in WISE project in Israel. Science Education International, 14, 3-19. 

  45. Tal, R. T., & Kedmi, Y. (2006). Teaching socioscientific issues: Classroom culture and students' performances. Cultural Studies of Science Education, 1(4), 615-644. 

  46. Tapscott, D., & Williams, A.D. (2006). Wikinomics: How mass collaboration changes everything. New York, NY: Portfolio. 

  47. Treffinger, D., J., Solomon, M., & Woythal, D. (2012). Four decades of creative vision: Insights from an evaluation of the future problem solving program international (FPSPI). The Journal of Creative Behavior, 46(3), 209-219. 

  48. Tweney, R. D. (1991). Informal reasoning in science. In J. F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning and education (pp. 3-16). Hillsdale, NJ: Erlbaum. 

  49. Yang, M. (2011). Exploring the principles of collaborative learning for realization of collective intelligence. The Korean Journal of Educational Methodology Studies, 23(2), 457-483. 

  50. Zeidler, D. L., & Kahn, S. (2014). It's debatable!: Using socioscientific issues to develop scientific literacy. Arlington, VA: NSTA press. 

  51. Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49-58. 

  52. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research based framework for socio-scientific issues education. Science Education, 89(3), 357-377. 

  53. Zohar, A., & Nemet, F. (2002). Fostering student's knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39, 35-62. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로