$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Conducting Polymers with Functional Dopants and their Applications in Energy, Environmental Technology, and Nanotechnology 원문보기

청정기술 = Clean technology, v.21 no.1, 2015년, pp.12 - 21  

Kim, Sung Yeol (Department of Mechanical Engineering, Kyungpook National University) ,  Song, Hyun-Kon (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology)

초록
AI-Helper 아이콘AI-Helper

전도성 고분자를 이용한 새로운 기능성 재료의 개발은 에너지, 환경, 나노 기술 분야 발전에 크게 기여할 것으로 기대를 모으고 있다. 최근에는 전도성 고분자에 기능성 도펀트(functional dopant)를 삽입하여 고성능화에 초점을 맞춘 연구들이 많이 수행되고 있다. 본 총설은 새로운 전도성 고분자 합성의 관점으로 쓰여진 다른 문헌들과 달리, 삽입되는 기능성 도펀트의 역할과 응용 분야를 중심으로 서술하였다. 대표적인 기능성 도펀트의 종류로는 산화환원 활성(redox-active) 분자, 카본나노물질, 바이오물질, 킬레이팅(Chelating) 분자 등이 있으며, 각각의 도펀트의 고유한 특징에 따라 베터리, 수처리용 분리막, 센서 등 다양한 분야에 활용될 수 있다. 본 총설에서는 각각의 기능성 도펀트가 첨가 되었을 때 장점과 응용 방향에 대해 살펴 보고, 전도성 고분자의 안정성 향상을 위한 방법과 고려해야 할 점들에 대하여 제안하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Development of novel conducting polymers (CPs) is expected to facilitate the advancement of functional materials used for energy, environmental, and nanotechnology. Recent research efforts are focused on doping CPs with functional dopants to enhance their performance or add additional functions that...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In this article, we focus on CPs doped with functional dopants and their applications. We define “functional dopants” as molecules having specific properties that are introduced to CPs when they are incorporated as dopants during polymerization.
본문요약 정보가 도움이 되었나요?

참고문헌 (57)

  1. Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., and Heeger, A. J., "Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene $(CH)_x$ ," J. Chem. Soc. Chem. Com., 578 (1977). 

  2. Chiang, C. K., Fincher, J., C. R., Park, Y. W., Heeger, A. J., Shirakawa, H., Louis, E. J., Gau, S. C., and MacDiarmid, A. G., "Electrical Conductivity in Doped Polyacetylene," Phys. Rev. Lett., 39(17), 1098-1101 (1977). 

  3. Diaz, A., "Electrochemical Preparation and Charaterizationof Conducting Polymers," Chem. Scripta, 17, 145-148 (1981). 

  4. Billingham, N. C., and Calvert, P. D., Electrically Conducting Polymers-A Polymer Science Viewpoint, Springer, New York, 1989, pp. 1-104. 

  5. Rubner, M. F., Conjugated Polymeric Conductors, in Molecular Electronics, Research Studies Press, Taunton, 1992, pp. 65-116. 

  6. Bredas, J. L., and Street, G. B., "Polarons, Bipolarons, and Solitons in Conducting Polymers," Accounts Chem. Res., 18 (10), 309-315 (1985). 

  7. Cosnier, S., "Biomolecule Immobilization on Electrode Surfaces by Entrapment or Attachment to Electrochemically Polymerized Films. A Review," Biosens. Bioelectron., 14(5), 443-456 (1999). 

  8. Li, G. T., Bhosale, S., Tao, S. Y., Bhosale, S., and Fuhrhop, J. H., "Conducting Polythiophenes with a Broad Spectrum of Reactive Groups," J. Polym. Sci. Pol. Chem., 43(19), 4547-4558 (2005). 

  9. Mouffouk, F., and Higgins, S. J., "A Biotin-Functionalised Poly(3,4-Ethylenedioxythiophene)-Coated Microelectrode Which Responds Electrochemically to Avidin Binding," Electrochem. Commun., 8(1), 15-20 (2006). 

  10. Jager, E. W. H., Smela, E., and Inganas, O., "Microfabricating Conjugated Polymer Actuators," Science, 290(5496), 1540-1545 (2000). 

  11. Noufi, R., Tench, D., and Warren, L. F., "Protection of Semiconductor Photo-Anodes with Photoelectrochemically Generated Polypyrrole Films," J. Electrochem. Soc., 128(12), 2596-2599 (1981). 

  12. Lian, G. H., and Dong, S. J., "Electrochemical-Behavior of Fe(Cn)6(3-)/4-Redox Ions in a Polypyrrole Film," J. Electroanal. Chem., 260(1), 127-136 (1989). 

  13. Rosenthal, M. V., Skotheim, T. A., and Linkous, C. A., "Polypyrrole Phthalocyanine," Synth. Met., 15(2-3), 219-227 (1986). 

  14. Elzing, A., Vanderputten, A., Visscher, W., and Barendrecht, E., "The Mechanism of Oxygen Reduction at Iron Tetrasulfonato-Phthalocyanine Incorporated in Polypyrrole," J. Electroanal. Chem., 233(1-2), 113-123 (1987). 

  15. Choi, C. S., and Tachikawa, H., "Electrochemical-Behavior and Characterization of Polypyrrole Copper Phthalocyanine Tetrasulfonate Thin-Film-Cyclic Voltammetry and Insitu Raman-Spectroscopic Investigation," J. Am. Chem. Soc., 112 (5), 1757-1768 (1990). 

  16. Saunders, B. R., Murray, K. S., Fleming, R. J., and Korbatieh, Y., "Physical and Spectroscopic Studies of Polypyrrole Films Containing Tetrasulfonated Metallophthalocyanine Counterions Prepared from Nonaqueous Solution," Chem. Mat., 5(6), 809-819 (1993). 

  17. Ikeda, O., Okabayashi, K., Yoshida, N., and Tamura, H., "Spectroelectrochemical Study of Oxygen Reduction at Metalloporphyrin-Doped Polypyrrole Film Electrodes," J. Electroanal. Chem., 191(1), 157-174 (1985). 

  18. Bedioui, F., Bongars, C., Devynck, J., Biedcharreton, C., and Hinnen, C., "Metalloporphyrin Polypyrrole Film Electrode-Characterization and Catalytic Application," J. Electroanal. Chem., 207(1-2), 87-99 (1986). 

  19. Song, E. H., and Paik, W. K., "Polypyrrole Doped with Sulfonate Derivatives of Metalloporphyrin: Use in Cathodic Reduction of Oxygen in Acidic and Basic Solutions," B. Kor. Chem. Soc., 19(2), 183-188 (1998). 

  20. Kajiya, Y., Sugai, H., Iwakura, C., and Yoneyama, H., "Glucose Sensitivity of Polypyrrole Films Containing Immobilized Glucose-Oxidase and Hydroquinonesulfonate Ions," Anal. Chem., 63(1), 49-54 (1991). 

  21. Li, C., Hatano, T., Takeuchi, M., and Shinkai, S., "Facile Design of Poly(3,4-Ethylenedioxythiophene)-Tris(2,2'-Bipyridine) Ruthenium (Ii) Composite Film Suitable for a Three-Dimensional Light-Harvesting System," Tetrahedron, 60, 8037-8041 (2004). 

  22. Li, Y. J., and Dong, S. J., "Indigo-Carmine-Modified Polypyrrole Film Electrode," J. Electroanal. Chem., 348(1-2), 181-188 (1993). 

  23. Song, H. K., and Palmore, G. T. R., "Redox-Active Polypyrrole: Toward Polymer-Based Batteries," Adv. Mater., 18(13), 1764-1768 (2006). 

  24. Milczarek, G., and Inganas, O., "Renewable Cathode Materials from Biopolymer/Conjugated Polymer Interpenetrating Networks," Science, 335(6075), 1468-1471 (2012). 

  25. Girotto, E. M., and De Paoli, M. A., "Polypyrrole Color Modulation and Electrochromic Contrast Enhancement by Doping with a Dye," Adv. Mater., 10(10), 790-793 (1998). 

  26. Girotto, E. M., Gazotti, W. A., Tormena, C. F., and De Paoli, M. A., "Photoelectronic and Transport Properties of Polypyrrole Doped with a Dianionic Dye," Electrochim. Acta, 47(9), 1351-1357 (2002). 

  27. Song, H. K., Lee, E. J., and Oh, S. M., "Electrochromism of 2,2'-Azinobis(3-Ethylbenzothiazoline-6-Sulfonate) Incorporated into Conducting Polymer as a Dopant," Chem. Mat., 17(9), 2232-2233 (2005). 

  28. Song, H. K., and Palmore, G. T. R., "Conductive Polypyrrole Via Enzyme Catalysis," J. Phys. Chem. B, 109(41), 19278-19287 (2005). 

  29. Fei, J. F., Lim, K. G., and Palmore, G. T. R., "Polymer Composite with Three Electrochromic States," Chem. Mater., 20(12), 3832-3839 (2008). 

  30. Garner, B., Hodgson, A. J., Wallace, G. G., and Underwood, P. A., "Human Endothelial Cell Attachment to and Growth on Polypyrrole-Heparin Is Vitronectin Dependent," J. Mater. Sci., 10(1), 19-27 (1999). 

  31. Garner, B., Georgevich, A., Hodgson, A. J., Liu, L., and Wallace, G. G., "Polypyrrole-Heparin Composites as Stimulus-Responsive Substrates for Endothelial Cell Growth," J. Biomed. Mater. Res., 44(2), 121-129 (1999). 

  32. Hodgson, A. J., John, M. J., Campbell, T., Georgevich, A., Woodhouse, S., Aoki, T., Ogata, N., and Wallace, G. G., "Integration of Biocomponents with Synthetic Structures-Use of Conducting Polymer Polyelectrolyte Composites," Proc. SPIE, 2716, 164-176 (1996). 

  33. Collier, J. H., Camp, J. P., Hudson, T. W., and Schmidt, C. E., "Synthesis and Characterization of Polypyrrole-Hyaluronic Acid Composite Biomaterials for Tissue Engineering Applications," J. Biomed. Mater. Res., 50(4), 574-584 (2000). 

  34. Khor, E., and Whey, J. L. H., "Interaction of Chitosan with Polypyrrole in the Formation of Hybrid Biomaterials," Carbohyd. Polym., 26(3), 183-187 (1995). 

  35. Li, H. C., and Khor, E., "A Collagen-Polypyrrole Hybrid-Influence of 3-Butanesulfonate Substitution," Macromol. Chem. Phys., 196(6), 1801-1812 (1995). 

  36. Hodgson, A. J., Gilmore, K., Small, C., Wallace, G. G., Mackenzie, I. L., Aoki, T., and Ogata, N., "Reactive Supramolecular Assemblies of Mucopolysaccharide, Polypyrrole and Protein as Controllable Biocomposites for a New Generation of 'Intelligent Biomaterials'," Supramol. Sci., 1(2), 77-83 (1994). 

  37. Wang, J., and Jiang, M., "Toward Genolelectronics: Nucleic Acid Doped Conducting Polymers," Langmuir, 16(5), 2269-2274 (2000). 

  38. Boyle, A., Genies, E., and Fouletier, M., "Electrochemical-Behavior of Polypyrrole Films Doped with Atp Anions," J. Electroanal. Chem., 279(1-2), 179-186 (1990). 

  39. Cui, X. Y., Lee, V. A., Raphael, Y., Wiler, J. A., Hetke, J. F., Anderson, D. J., and Martin, D. C., "Surface Modification of Neural Recording Electrodes with Conducting Polymer/Biomolecule Blends," J. Biomed. Mater. Res., 56(2), 261-272 (2001). 

  40. Song, H. K., Toste, B., Ahmann, K., Hoffman-Kim, D., and Palmore, G. T. R., "Micropatterns of Positive Guidance Cues Anchored to Polypyrrole Doped with Polyglutamic Acid: A New Platform for Characterizing Neurite Extension in Complex Environments," Biomaterials, 27(3), 473-484 (2006). 

  41. Kim, S. Y., Sen, S., Song, H. K., and Palmore, G. T. R., "Enhancing the Stability and Performance of a Battery Cathode Using a Non-Aqueous Electrolyte," Electrochem. Commun., 12(6), 761-764 (2010). 

  42. Chen, G. Z., Shaffer, M. S. P., Coleby, D., Dixon, G., Zhou, W. Z., Fray, D. J., and Windle, A. H., "Carbon Nanotube and Polypyrrole Composites: Coating and Doping," Adv. Mater., 12(7), 522-526 (2000). 

  43. Wei, Z. X., Wan, M. X., Lin, T., and Dai, L. M., "Polyaniline Nanotubes Doped with Sulfonated Carbon Nanotubes Made Via a Self-Assembly Process," Adv. Mater., 15(2), 136-139 (2003). 

  44. Shaffer, M. S. P., Fan, X., and Windle, A. H., "Dispersion and Packing of Carbon Nanotubes," Carbon, 36(11), 1603-1612 (1998). 

  45. Qin, S. H., Qin, D. Q., Ford, W. T., Herrera, J. E., Resasco, D. E., Bachilo, S. M., and Weisman, R. B., "Solubilization and Purification of Single-Wall Carbon Nanotubes in Water by in Situ Radical Polymerization of Sodium 4-Styrenesulfonate," Macromolecules, 37(11), 3965-3967 (2004). 

  46. Guldi, D. M., Rahman, G. M. A., Zerbetto, F., and Prato, M., "Carbon Nanotubes in Electron Donor-Acceptor Nanocomposites," Accounts Chem. Res., 38(11), 871-878 (2005). 

  47. Hughes, M., Chen, G. Z., Shaffer, M. S. P., Fray, D. J., and Windle, A. H., "Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole," Chem. Mat., 14(4), 1610-1613 (2002). 

  48. Wang, J., and Musameh, M., "Carbon-Nanotubes Doped Polypyrrole Glucose Biosensor," Anal. Chim. Acta, 539(1-2), 209-213 (2005). 

  49. Chandra, V., and Kim, K. S., "Highly Selective Adsorption of $Hg^{2+}$ by a Polypyrrole-Reduced Graphene Oxide Composite," Chem. Commun., 47(13), 3942-3944 (2011). 

  50. Misoska, V., Ding, J., Davey, J. M., Price, W. E., Ralph, S. F., and Wallace, G. G., "Polypyrrole Membranes Containing Chelating Ligands: Synthesis, Characterisation and Transport Studies," Polymer, 42(21), 8571-8579 (2001). 

  51. Fei, J. F., Song, H. K., and Palmore, G. T. R., "A Biopolymer Composite That Catalyzes the Reduction of Oxygen to Water," Chem. Mater., 19(7), 1565-1570 (2007). 

  52. Draget, K. I., SkjakBraek, G., and Smidsrod, O., "Alginate Based New Materials," Int. J. Biol. Macromol., 21(1-2), 47-55 (1997). 

  53. Kim, S. Y., and Palmore, G. T. R., "Conductive Hydrogel for Bio-Electrocatalytic Reduction of Dioxygen," Electrochem. Commun., 23, 90-93 (2012). 

  54. Hwang, R. Y., Kim, S. Y., Palmore, G. T. R., and Song, H. K., "Suppression of the Loss of an Electroactive Dopant from Polypyrrole by Using a Non-Aqueous Electrolyte of Dopant-Phobicity," J. Electroanal. Chem., 657(1-2), 181-186 (2011). 

  55. Beck, F., Braun, P., and Oberst, M., "Organic Electrochemistry in the Solid State-Overoxidation of Polypyrrole," Berichte der Bunsengesellschaft fur physikalische Chemie, 91(9), 967-974 (1987). 

  56. Park, D. S., Shim, Y. B., and Park, S. M., "Degradation of Electrochemically Prepared Polypyrrole in Aqueous Sulfuric-Acid," J. Electrochem. Soc., 140(3), 609-614 (1993). 

  57. Kim, S. Y., Kim, K. M., Hoffman-Kim, D., Song, H. K., and Pamore, G. T. R., "Quantitative Control of Neuron Adhesion at a Neural Interface Using a Conducting Polymer Composite with Low Electrical Impedance," ACS Appl. Mater. Inter., 3(1), 16-21 (2011). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로