$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Rapid and Specific Detection of Acidovorax avenae subsp. citrulli Using SYBR Green-Based Real-Time PCR Amplification of the YD-Repeat Protein Gene 원문보기

Journal of microbiology and biotechnology, v.25 no.9, 2015년, pp.1401 - 1409  

Cho, Min Seok (National Academy of Agricultural Science, Rural Development Administration) ,  Park, Duck Hwan (Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University) ,  Ahn, Tae-Young (Department of Microbiology, Dankook University) ,  Park, Dong Suk (National Academy of Agricultural Science, Rural Development Administration)

Abstract AI-Helper 아이콘AI-Helper

The aim of this study was to develop a SYBR Green-based real-time PCR assay for the rapid, specific, and sensitive detection of Acidovorax avenae subsp. citrulli, which causes bacterial fruit blotch (BFB), a serious disease of cucurbit plants. The molecular and serological methods currently availabl...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • The genomic DNA was isolated from the Acidovorax strains and the other bacterial strains using a Genomic DNA Prep Kit (SolGent, Korea) according to the manufacturer’s protocol. The quantity and purity of the bacterial genomic DNA was evaluated by measuring its absorbance using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).

이론/모형

  • 5×TAE buffer. The SYBR Green-based real-time PCR assay was conducted using a total volume of 20 µl of a reaction mixture containing 10 µl of SYBR Premix Ex Taq (Takara Bio, Inc., Japan), 5 pM of each AC158F/R primers, and 5 ng of purified DNA. The SYBR Green-based real-time PCR assay was performed using a CFX96 real-time PCR system (Bio-Rad Laboratories, Inc.
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. Atlas RM. 2004. Handbook of Microbiological Media, pp.913-1888. 3rd Ed. CRC Press, New York. 

  2. Bahar O, Efrat M, Hadar E, Dutta B, Walcott R, Burdman S. 2008. New subspecies-specific polymerase chain reactionbased assay for the detection of Acidovorax avenae subsp. citrulli. Plant Pathol. 57: 754-763. 

  3. Burdman S, Kots N, Kritzman G, Kopelowitz J. 2005. Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Dis. 89: 1339-1347. 

  4. Cho MS, Kang MJ, Kim CK, Seol Y, Hahn JH, Park SC, et al. 2011. Sensitive and specific detection of Xanthomonas oryzae pv. oryzae by real-time bio-PCR using pathovar-specific primers based on an rhs family gene. Plant Dis. 95: 589-594. 

  5. De Boer S, Elphinstone J, Saddler G. 2007. Molecular detection strategies for phytopathogenic bacteria, pp. 321-325. In Punja ZK, De Boer SH, Sanfancon H (eds.). Biotechnology and Plant Disease Management. CAB International, Oxford, United Kingdom. 

  6. Feulner G, Gray JA, Kirschman JA, Lehner AF, Sadosky AB, Vlazny DA, et al. 1990. Structure of the rhsA locus from Escherichia coli K-12 and comparison of rhsA with other members of the rhs multigene family. J. Bacteriol. 172: 446-456. 

  7. Fu J, Li D, Xia S, Song H, Dong Z, Chen F, et al. 2009. Absolute quantification of plasmid DNA by real-time PCR with genomic DNA as external standard and its application to a biodistribution study of an HIV DNA vaccine. Anal. Sci. 25: 675-680. 

  8. Goto M, Matsumoto K. 1987. Erwinia carotovora subsp. wasabiae subsp. nov. isolated from diseased rhizomes and fibrous roots of Japanese horseradish (Eutrema wasabi Maxim.). Int. J. Syst. Bacteriol. 37: 130-135. 

  9. Ha Y, Fessehaie A, Ling K, Wechter W, Keinath A, Walcott R. 2009. Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction. Phytopathology. 99: 666-678. 

  10. Hatziloukas E, Schaad NW, Song W. 2000. PCR primers for detection of plant pathogenic species and subspecies of Acidovorax. US Patent 6146834. 

  11. Hill CW, Sandt CH, Vlazny DA. 1994. Rhs elements of Escherichia coli: a family of genetic composites each encoding a large mosaic protein. Mol. Microbiol. 12: 865-871. 

  12. Hopkins D, Thompson C. 2002. Seed transmission of Acidovorax avenae subsp. citrulli in cucurbits. HortScience 37: 924-926. 

  13. Jackson AP, Thomas GH, Parkhill J, Thomson NR. 2009. Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement. BMC Genomics 10: 584. 

  14. Kim MH, Cho MS, Kim BK, Choi HJ, Hahn JH, Kim C, et al. 2012. Quantitative real-time polymerase chain reaction assay for detection of Pectobacterium wasabiae using YD repeat protein gene-based primers. Plant Dis. 96: 253-257. 

  15. Mäde D, Petersen R, Trümper K, Stark R, Grohmann L. 2004. In-house validation of a real-time PCR method for rapid detection of Salmonella ssp. in food products. Eur. Food Res. Technol. 219: 171-177. 

  16. Minet AD, Rubin BP, Tucker RP, Baumgartner S, ChiquetEhrismann R. 1999. Teneurin-1, a vertebrate homologue of the Drosophila pair-rule gene ten-m, is a neuronal protein with a novel type of heparin-binding domain. J. Cell Sci. 112: 2019-2032. 

  17. Park DS, Shim JK, Kim JS, Lim CK, Shrestha R, Hahn JH, et al. 2009. Sensitive and specific detection of Xanthomonas campestris pv. vesicatoria by PCR using pathovar-specific primers based on rhs family gene sequences. Microbiol. Res. 164: 36-42. 

  18. Park D, Shim J, Kim J, Kim B, Kang M, Seol Y, et al. 2006. PCR-based sensitive and specific detection of Pectobacterium atrosepticum using primers based on rhs family gene sequences. Plant Pathol. 55: 625-629. 

  19. Park Y, Lee Y, Choi Y, Son B, Kang J. 2008. Evaluations of PCR primers used in the detection of Acidovorax avenae subsp. citrulli causing bacterial fruit blotch (BFB) in cucurbits. Hortic. Environ. Biotechnol. 49: 325-331. 

  20. Rose P, Harkin JM, Hickey WJ. 2003. Competitive touchdown PCR for estimation of Escherichia coli DNA recovery in soil DNA extraction. J. Microbiol. Methods 52: 29-38. 

  21. Schaad NW, Postnikova E, Randhawa P. 2003. Emergence of Acidovorax avenae subsp. citrulli as a crop threatening disease of watermelon and melon, pp. 573-581. In Iacobellis NS, Collmer A, Hutcheson SW, Mansfield JW, Morris CE, Murillo J, et al. (eds.). Pseudomonas syringae and Related Pathogens. Kluwer Academic Publishers, Netherland. 

  22. Schaad NW, Sowell G, Goth R, Colwell R, Webb R. 1978. Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov. Int. J. Syst. Bacteriol. 28: 117-125. 

  23. Smolina I, Miller NS, Frank-Kamenetskii M. 2010. PNAbased microbial pathogen identification and resistance marker detection: an accurate, isothermal rapid assay based on genome-specific features. Artif. DNA PNA XNA 1: 1-7. 

  24. Song W, Sechler A, Hatziloukas E, Kim H, Schaad N. 2003. Use of PCR for rapid identification of Acidovorax avenae and A. avenae subsp. citrulli, pp. 531-544. In lacobellis NS, Collemer A, Hutchenson SW, Mansfield JW, Morris CE, Schaad NW, et al. (eds). Pseudomonas syringae and Related Pathogens. Kluwer Academic Publishers, Netherland. 

  25. Sowell Jr G, Schaad N. 1979. Pseudomonas pseudoalcaligenes subsp. citrulli on watermelon: seed transmission and resistance of plant introductions. Plant Dis. Report. 63: 437-441. 

  26. van Doorn HR, Claas EC, Templeton KE, van der Zanden AG, te Koppele Vije A, de Jong MD, et al. 2003. Detection of a point mutation associated with high-level isoniazid resistance in Mycobacterium tuberculosis by using real-time PCR technology with 3'-minor groove binder-DNA probes. J. Clin. Microbiol. 41: 4630-4635. 

  27. Walcott R, Fessehaie A, Castro A. 2004. Differences in pathogenicity between two genetically distinct groups of Acidovorax avenae subsp. citrulli on cucurbit hosts. J. Phytopathol. 152: 277-285. 

  28. Walcott R, Gitaitis R. 2000. Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Dis. 84: 470-474. 

  29. Walcott R, Gitaitis R, Castro A. 2003. Role of blossoms in watermelon seed infestation by Acidovorax avenae subsp. citrulli. Phytopathology 93: 528-534. 

  30. Walcott R, Langston Jr D, Sanders Jr F, Gitaitis R. 2000. Investigating intraspecific variation of Acidovorax avenae subsp. citrulli using DNA fingerprinting and whole cell fatty acid analysis. Phytopathology 90: 191-196. 

  31. Wang X, Zhang L, Xu FS, Zhao LH, Xie GL. 2007. Immunocapture PCR method for detecting Acidovorax avenae subsp. citrulli from watermelon. Ch. J. Agric. Biotechnol. 4: 173. 

  32. Zhao T, Feng J, Sechler A, Randhawa P, Li J, Schaad N. 2009. An improved assay for detection of Acidovorax citrulli in watermelon and melon seed. Seed Sci. Technol. 37: 337-349. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로