$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

대기 결빙 조건에서의 전기열 방식 결빙보호 시스템에 관한 전산해석
COMPUTATIONAL ANALYSIS OF AN ELECTRO-THERMAL ICE PROTECTION SYSTEM IN ATMOSPHERIC ICING CONDITIONS 원문보기

한국전산유체공학회지 = Journal of computational fluids engineering, v.21 no.1 = no.72, 2016년, pp.1 - 9  

프린스 라즈 (경상대학교 대학원 기계항공공학부) ,  명노신 (경상대학교 대학원 기계항공공학부)

Abstract AI-Helper 아이콘AI-Helper

Atmospheric icing may have significant effects not only on safety of aircraft in air, but also on performance of wind turbine and power networks on ground. Thus, ice protection measure should be developed to protect these systems from icing hazards. A very efficient method is the electro-thermal de-...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • The ice accretion results at various time steps with IPS are also shown in Fig. 10. Shedding of ice and dramatic reduction of ice accretion can be easily observed.
  • The maximum solid surface temperature on the airfoil is shown in Fig. 9. The trend shown in the DU21 surface temperature remains the same as NACA0012 surface temperature. The maximum temperature on the surface of airfoil does not exceed very much above 288 K.
본문요약 정보가 도움이 되었나요?

참고문헌 (22)

  1. 2000, Gent, R.W., Dart, N.P. and Cansdale, J.T., "Aircraft Icing," Philosophical Transactions of the Royal Society A, Vol.358, No.1776, pp.2873-2911. 

  2. 1998, Kind, R.J., Potapczuk, M.G., Feo, A., Golia, C. and Shah, A.D., "Experimental and Computational Simulation of In-flight Icing Phenomena," Progress in Aerospace Science, Vol.34, No.5-6, pp.257-345. 

  3. 2010, Jung, S.K., Myong, R.S. and Cho, T.H., "An Eulerian-Based Droplet Impingement and Ice Accretion Code for Aircraft Icing Prediction," Journal of Computational Fluids Engineering, Vol.15, No.2, pp.71-78. 

  4. 2013, Jung, K.Y., Jung, S.K. and Myong, R.S., "A Three-Dimensional Unstructured Finite Volume Method for Analysis of Droplet Impingement in Icing," Journal of Computational Fluids Engineering, Vol.18, No.2, pp.41-49. 

  5. 2013, Jung, S.K. and Myong, R.S., "A Second-Order Positivity-Preserving Finite Volume Upwind Scheme for Air-Mixed Droplet Flow in Atmospheric Icing," Computers & Fluids, Vol.86, pp.459-469. 

  6. 2015, Ahn, G.B., Jung, K.Y., Myong, R.S., Shin, H.B. and Habashi, W.G., "Numerical and Experimental Investigation of Ice Accretion on a Rotorcraft Engine Air Intake," Journal of Aircraft, Vol.52, No.3, pp.903-909. 

  7. 2015, Son, C.K., Oh, S.J. and Yee, K.J., "Development of 2nd Generation Ice Accretion Analysis Program for Handling General 3-D Geometries," Journal of Computational Fluids Engineering, Vol.20, No.2, pp.23-36. 

  8. 2012, Villalpando, F., Reggio, M. and Ilinca, A., "Numerical Study of Flow around Iced Wind Turbine Airfoil," Engineering Applications of Computational Fluid Mechanics, Vol.6, No.1, pp.39-45. 

  9. 2011, Parent, O. and Ilinca, A., "Anti-icing and De-icing Techniques for Wind Turbines: Critical Review," Cold Regions Science and Technology, Vol.65, pp.88-96. 

  10. 2010, Barber, S., Wang, Y., Jafari, S., Chokani, N. and Abhari, R.S., "The Impact of Ice Formation on Wind Turbine Performance and Aerodynamics," European Wind Energy Conference. 

  11. 1992, Yaslik, A.D., De Witt, K.J., Keith, T.G. and Boronow, W., "Three-Dimensional Simulation of Electro-Thermal Deicing Systems," Journal of Aircraft, Vol.29, No.6, pp.1035-1042. 

  12. 1996, Thomas, S.K., Cassoni, R.P. and MacArthur, C.D., "Aircraft Anti-Icing and De-Icing Techniques and Modeling," Journal of Aircraft, Vol.33, No.5, pp.841-854. 

  13. 2014, NTI Solutions User Manual, Newmerical Technologies Inc. 

  14. 2001, Beaugendre, H., Morency, F. and Habashi, W.G. "ICE3D, FENSAP-ICE's 3D In-flight Ice Accretion Module," 8th Aerodynamics Symposium, CASI, Toronto. 

  15. 2000, Bourgault, Y., Boutanios, Z. and Habashi, W.G., "Three-Dimensional Eulerian Approach to Droplet Impingement Simulation Using FENSAP-ICE, Part 1: Model, Algorithm, and Validation," Journal of Aircraft, Vol.37, No.1, pp.95-103. 

  16. 1953, Messinger, B.L., "Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed," Journal of the Aeronautical Sciences, Vol.20, pp.29-42. 

  17. 2003, Beaugendre, H., Morency, F. and Habashi, W.G., "FENSAP-ICE's Three-Dimensional In-Flight Ice Accretion Module: ICE3D," Journal of Aircraft, Vol.40, No.2, pp.239-247. 

  18. 2002, Croce, G., Beaugendre, H. and Habashi, W.G., "CHT3D, FENSAP-ICE Conjugate Heat Transfer Computations with Droplet Impingement and Runback Effects," AIAA Paper 2002-7212. 

  19. 2014, Suke, P., "Analysis of Heating Systems to Mitigate Ice Accretion on Wind Turbine Blades," Master Thesis, McMaster University. 

  20. 2013, Myong, R.S., "Atmospheric Icing Effects on Aerodynamics of Wind Turbine Blade," ASME 2013 International Mechanical Engineering Congress and Exposition. 

  21. 2009, Butterfield, S., Musial, W. and Scott, G., "Definition of a 5-MW Reference Wind Turbine for Offshore System Development," National Renewable Energy Laboratory, US. 

  22. 1997, Wright, W.B., Al-Khalil, K. and Miller, D., "Validation of NASA Thermal Ice Protection Computer Codes Part 2 LEWICE/Thermal," AIAA Paper 97-0049. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로