$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Burkholderia tropica as a Potential Microalgal Growth-Promoting Bacterium in the Biosorption of Mercury from Aqueous Solutions 원문보기

Journal of microbiology and biotechnology, v.27 no.6, 2017년, pp.1138 - 1149  

Zarate, Ana (Doctoral Program in Applied Sciences - Coastal Marine Systems, Faculty of Marine Sciences and Biological Resources, University of Antofagasta) ,  Florez, July (Microalgae Biotechnology Research Group, Faculty of Basic Sciences, University of Atlantico) ,  Angulo, Edgardo (Microalgae Biotechnology Research Group, Faculty of Basic Sciences, University of Atlantico) ,  Varela-Prieto, Lourdes (Immunology and Molecular Biology Research Group, University of Atlantico) ,  Infante, Cherlys (Faculty of Pharmaceutical Sciences, Campus of Zaragocilla, University of Cartagena) ,  Barrios, Fredy (Faculty of Pharmaceutical Sciences, Campus of Zaragocilla, University of Cartagena) ,  Barraza, Beatriz (Faculty of Health Sciences, CIUL, Universuty Libre) ,  Gallardo, D.I (Department of Mathematics, Faculty of Engineering, University of Atacama) ,  Valdes, Jorge (Doctoral Program in Applied Sciences - Coastal Marine Systems, Faculty of Marine Sciences and Biological Resources, University of Antofagasta)

Abstract AI-Helper 아이콘AI-Helper

The use of microalgal biomass is an interesting technology for the removal of heavy metals from aqueous solutions owing to its high metal-binding capacity, but the interactions with bacteria as a strategy for the removal of toxic metals have been poorly studied. The goal of the current research was ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • tropica in polyurethane discs. (B) Both microorganisms are randomly immobilized in the polymeric foam. (C) After co-cultivating for a short period of time, the two microorganisms share the cavities within the porous foams.
본문요약 정보가 도움이 되었나요?

참고문헌 (70)

  1. Shin W, Na K, Kim Y. 2015. Adsorption of metal ions from aqueous solution by recycled aggregate: estimation of pretreatment effect. Desalination Water Treat. 57: 9366-9374. 

  2. Mehta J, Bhardwaj SK, Bhardwaj N, Paul AK, Kumar P, Kim KH, Deep A. 2016. Progress in the biosensing techniques for trace-level heavy metals. Biotechnol. Adv. 34: 47-60. 

  3. He J, Chen JP. 2014. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 160: 67-78. 

  4. Veglio F, Beolchini F. 1997. Removal of metals by biosorption: a review. Hydrometallurgy 44: 301-316. 

  5. Maznah WW, Al-Fawwaz AT, Surif M. 2012. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metals biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J. Environ. Sci. 24: 1386-1393. 

  6. Kondo K, Hirayama K, Matsumoto M. 2013. Adsorption of metal ions from aqueous solution onto microalga entrapped into Ca-alginate gel bead. Desalination Water Treat. 51: 4675- 4683. 

  7. Zhang X, Zhao X, Wan C, Chen B, Bai F. 2016. Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Res. 16: 427-433. 

  8. Xu J, Song X, Zhang Q, Pan H, Liang Y. 2011. Characterization of metal removal of immobilized Bacillus strain CR-7 biomass from aqueous solutions. J. Hazard. Mater. 187: 450-458. 

  9. Aksu Z, Donmez G. 2006. Binary biosorption of cadmium (II) and nickel (II) onto dried Chlorella vulgaris: co-ion effect on mono-component isotherm parameters. Process Biochem. 41: 860-868. 

  10. Mehta SK, Gaur JP. 2005. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 25: 113-152. 

  11. Tuzen M, Sari A. 2010. Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem. Eng. J. 158: 200-206. 

  12. Anastopoulos I, Kyzas GZ. 2015. Progress in batch biosorption of heavy metals onto algae. J. Mol. Liquids 209: 77-86. 

  13. Inthorn D, Sidtitoon N, Silapanuntakul S, Incharoensakdi A. 2002. Sorption of mercury, cadmium and lead by microalgae. ScienceAsia 28: 253-261. 

  14. Brinza L, Dring MJ, Gavrilescu M. 2007. Marine micro and macro algal species as biosorbents for heavy metals. Environ. Eng. Manag. J. 6: 237-251. 

  15. Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH. 2015. Microalgae - a promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 113: 329-352. 

  16. de-Bashan LE, Moreno M, Hernandez JP, Bashan Y. 2002. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae. Water Res. 36: 2941- 2948. 

  17. Akhtar N, Iqbal M, Zafar S, Iqbal J. 2008. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J. Environ. Sci. 20: 231-239. 

  18. Infante C, Leun I, Florez JZ, Zarate AM, Barrios F, Zapata C. 2013. Removal of ammonium and phosphate ions from wastewater samples by immobilized Chlorella sp. Int. J. Environ. Stud. 70: 1-7. 

  19. Ting H, Haifeng L, Shanshan M, Zhang Y. 2017. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. Int. J. Agric. Biol. Eng. 10: 1-29. 

  20. Doshi H, Ray A, Kothari IL. 2008. Bioremediation potential of Chlorella: spectroscopic, kinetics, and SEM studies. Int. J. Phytoremediation 10: 264-277. 

  21. Akhtar N, Iqbal J, Iqbal M. 2004. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J. Hazard. Mater. 108: 85-94. 

  22. de-Bashan LE, Bashan Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour. Technol. 101: 1611-1627. 

  23. Katircioglu H, Aslim B, Turker AR, Atici T, Beyatli Y. 2008. Removal of cadmium(II) ion from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1 isolated from freshwater (Mogan Lake). Bioresour. Technol. 99: 4185-4191. 

  24. Mallick N. 2002. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15: 377-390. 

  25. Rangsayatorn N, Pokethitiyook P, Upatham ES, Lanza GR. 2004. Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ. Int. 30: 57-63. 

  26. Travieso L, Benitez F, Weiland P, Sanchez E, Dupeyron R, Dominguez AR. 1996. Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresour. Technol. 55: 181-186. 

  27. Travieso L, Canizares RO, Borja R, Benitez F, Dominguez AR, Dupeyron R, Valiente V. 1999. Heavy metal removal by microalgae. Bull. Environ. Contam. Toxicol. 62: 144-151. 

  28. Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. 2016. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34: 14-29. 

  29. Pellon A, Frades J, Chacon A, Perez E, Ona A, Espinosa MC, et al. 2005. Eliminacion de cromo y cadmio mediante Scenedesmus obliquus en estado inmovilizado. Rev. CENIC Cienc. Quim. 36: 175-180. 

  30. Marcelino PRF, Milani KML, Mali S, dos Santos OJAP, de Oliveira ALM. 2016. Formulations of polymeric biodegradable low-cost foam by melt extrusion to deliver plant growthpromoting bacteria in agricultural systems. Appl. Microbiol. Biotechnol. 100: 7323-7338. 

  31. Caballero-Mellado J, Onofre-Lemus J, Estrada-de Los Santos P, Martinez-Aguilar L. 2007. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol. 73: 5308-5319. 

  32. Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero- Mellado J, Perez-Rueda E. 2013. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered 4: 236-243. 

  33. Suarez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonca-Previato L, James EK, Venturi V. 2012. Common features of environmental and potentially beneficial plantassociated Burkholderia. Microb. Ecol. 63: 249-266. 

  34. Bashan Y, Holguin G. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can. J. Microbiol. 50: 521-577. 

  35. Bashan Y, Hernandez JP, Leyva LA, Bacilio M. 2002. Alginate microbeads as inoculant carriers for plant growthpromoting bacteria. Biol. Fertil. Soils 35: 359-368. 

  36. Subashchandrabose S, Ramakrishnan B. 2011. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol. Adv. 29: 896-907. 

  37. Franco AJ, Leon-Luna I. 2010. Geochemistry and heavy metals concentrations in a comercial importance organism (Corbula caribaea. D'orbigny, 1842) in shallow subtidal zone at the Mallorquin-Atlantico Coastal lagoon. Bol. Cient. CIOH 28: 69-83. 

  38. Mangones A, Leon-Luna I. 2014. Elementos nutritivos la clorofila a y su relacion con las variables fisico quimicas en la Cienaga de Mallorquin, Colombia. Bol. Inst. Oceanograf. Venez. 53: 127-141. 

  39. Baron E, Gago-Ferrero P, Gorga M, Rudolph I, Mendoza G, Zapata AM, et al. 2013. Occurrence of hydrophobic organic pollutants (BFRs and UV-filters) in sediments from South America. Chemosphere 92: 309-316. 

  40. Sanchez E, Gonzalez M, Cantu V. 2008. Estudio cinetico e isotermas de adsorcion de Ni (II) y Zn (II) utilizando biomasa del alga Chlorella sp. inmovilizada. Cien. UANL 11: 168-176. 

  41. Roesch LFW, Olivares FL, Pereira Passaglia LM, Selbach PA, de Sa ELS, de Camargo FAO. 2006. Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World J. Microbiol. Biotechnol. 22: 967-974. 

  42. Reis VM, Estrada-de los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, et al. 2004. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int. J. Syst. Evol. Microbiol. 54: 2155-2162. 

  43. Arcos M, Diaz TF. 2004. Crioperservacion de aislados nativos de la bacteria ruminal Fibrobacter succinogenes. Corpoica Cien. Tecnol. Agropecuaria (Colombia) 5: 60-63. 

  44. Fernandes Junior PI, Duarte Pereira GM, Perin L, Mesquita da Silva L, Cardoso Barauna A, Muniz Alves F, et al. 2013. Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae) in the Brazilian Amazon. Int. J. Trop. Biol. 61: 991-999. 

  45. Mathialagan T, Viraraghavan T. 2003. Adsorption of cadmium from aqueous solutions by vermiculite. Sep. Sci. Technol. 38: 57-76. 

  46. Gokhale S, Jyoti K, Lele S. 2008. Kinetic and equilibrium modeling of chromium(VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour. Technol. 99: 3600-3608. 

  47. Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40: 1361-1403. 

  48. Freundlich H, Hatfield H. 1926. Colloid and Capillary Chemistry. Mathuen and Co. Ltd, London, UK. 

  49. Ferrari SLP, Cribari-Neto F. 2004. Beta regression for modelling rates and proportions. J. Appl. Stat. 31: 799-815. 

  50. Cribari-Neto F, Zeileis A. 2010. Beta regression in R. J. Stat. Softw. 34: 1-24. 

  51. WHO. 2008. Guidelines for drinking water quality. World Health Organization, Geneva. Switzerland. 

  52. EPA. 2002. Environmental Protection Agency safe drinking water facts sheets. Islamabad, Pakistan. 

  53. Maxwell D, Falk S, Trick C, Huner N. 1994. Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol. 105: 535-543. 

  54. Shanab S, Essa A, Shalaby E. 2012. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signal. Behav. 7: 392-399. 

  55. Yamaguchi T, Ishida M, Suzuki T. 1999. An immobilized cell system in polyurethane foam for the lipophilic microalga Prototheca zopfii. Process Biochem. 34: 167-171. 

  56. Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. 1994. Biofilms, the customized microniche. J. Bacteriol. 176: 2137-2142. 

  57. Urrutia I, Serra J, Llama M. 19995. Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams. Enzyme Microb. Technol. 17: 200-205. 

  58. Cho DH, Ramanan R, Heo J, Lee J, Kim BH, Oh HM, Kim HS. 2015. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour. Technol. 175: 578-585. 

  59. de-Bashan LE, Antoun H, Bashan Y. 2005. Cultivation factors and population size control the uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol. Ecol. 54: 197-203. 

  60. de-Bashan LE, Bashan Y. 2008. Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions. Appl. Environ. Microbiol. 74: 6797-6802. 

  61. Kondo K, Hirayama K, Matsumoto M. 2013. Adsorption of metal ions from aqueous solution onto microalga entrapped into Ca-alginate gel bead. Desalination Water Treat. 51: 4675- 4683. 

  62. Vinod VTP, Sashidhar RB, Sivaprasad N, Sarma VUM, Satyanarayana N, Kumaresan R, et al. 2011. Bioremediation of mercury(II) from aqueous solution by gum karaya (Sterculia urens): a natural hydrocolloid. Desalination 272: 270-277. 

  63. Sheng PX, Ting YP, Chen JP, Hong L. 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci. 275: 131-141. 

  64. Bayramoglu G, Tuzun I, Celik G, Yilmaz M, Arica MY. 2006. Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int. J. Miner. Process. 81: 35-43. 

  65. De Schamphelaere K, Vasconcelos FM, Heijerick DG, Tack FMG, Delbeke K, Allen HE, Janssen CR. 2003. Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 22: 2454-2465. 

  66. Chen CY, Chang HW, Kao PC, Pan JL, Chang JS. 2012. Biosorption of cadmium by $CO_2$ -fixing microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 105: 74-80. 

  67. Munoz R, Alvarez MT, Munoz A, Terrazas E, Guieysse B, Mattiasson B. 2006. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. Chemosphere 63: 903-911. 

  68. Saglam N, Say R, Denizli A, Patir S, Arica MY. 1999. Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysosporium mycelium. Process Biochem. 34: 725-730. 

  69. Seok S, Shin S, Lee TJ, Jeong JM, Yang M, Kim DH, et al. 2015. Multifunctional polyurethane sponge for polymerase chain reaction enhancement. ACS Appl. Mater. Interfaces 7: 4699-4705. 

  70. Abbas M, Nadeem R, Zafar MN, Arshad M. 2008. Biosorption of chromium(III) and chromium(VI) by untreated and pretreated Cassia fistula biomass from aqueous solutions. Water Air Soil Pollut. 191: 139-148. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로