$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Impact of Energy Relaxation of Channel Electrons on Drain-Induced Barrier Lowering in Nano-Scale Si-Based MOSFETs 원문보기

ETRI journal, v.39 no.2, 2017년, pp.284 - 291  

Mao, Ling-Feng (School of Computer & Communication Engineering, University of Science & Technology Beijing)

Abstract AI-Helper 아이콘AI-Helper

Drain-induced barrier lowering (DIBL) is one of the main parameters employed to indicate the short-channel effect for nano metal-oxide semiconductor field-effect transistors (MOSFETs). We propose a new physical model of the DIBL effect under two-dimensional approximations based on the energy-conserv...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In conclusion, we proposed a new physical model of DIBL based on the energy balance of channel electrons under 2D approximations. First, we deduced the formula of the channel field at the source using a 2D model, and we then used the energy balance to determine the increased energy caused by the channel field. Finally, we obtained an analytical expression for the DIBL coefficient.
  • In this study, we used the energy-conservation equation, and there was a reduction in the effective barrier height between the source and the channel, which is calculated from the channel electrons, when the channel electrons gain kinetic energy from the channel field. This model illustrates the physical origin of such a DIBL based on its simplicity and analytic nature.
  • The data of the DIBL coefficient versus temperature were obtained from [27]. The above results further demonstrate that the proposed model is suitable for describing the physical origin of DIBL in Si-based MOSFETs.

데이터처리

  • To further test the validity of the proposed model, we compared the doping concentration and temperature-dependent DIBL coefficient. The DIBL coefficient has been found to first decrease and then increase with the channel doping concentration [24].
본문요약 정보가 도움이 되었나요?

참고문헌 (27)

  1. S.Y. Wu et al, "A 16 nm FinFET CMOS Technology for Mobile SoC and Computing Applications," IEEE Int. IEDM, Washington, DC, USA, Dec. 9-11, 2013, pp. 9.1.1-9.1.4. 

  2. S. Bangsaruntip et al., "Density Scaling with Gate-All-Around Silicon Nanowire MOSFETs for the 10 nm Node and Beyond," IEEE Int. IEDM, Washington, DC, USA, Dec. 9-11, 2013, pp. 20.2.1-20.2.4. 

  3. J.H. Huang et al., "A Physical Model for MOSFET Output Resistance," IEDM Tech. Dig., San Francisco, CA, USA, Dec. 13-16, 1992, pp. 569-572. 

  4. M.J. Deen and Z.X. Yan, "DIBL in Short-Channel NMOS Devices at 77 K," IEEE Trans. Electron. Devices, vol. 39, no. 4, Apr. 1992, pp. 908-915. 

  5. I. Ferain, C.A. Colinge, and J.P. Colinge, "Multigate Transistors as the Future of Classical Metal-Oxide-Semiconductor Field-Effect Transistors," Nature, vol. 479, no. 7373, Nov. 2011, pp. 310-316. 

  6. S. Narasimha et al., "22 nm High-Performance SOI Technology Featuring Dual-Embedded Stressors, Epi-Plate High-K Deep-Trench Embedded DRAM and Self-Aligned Via 15LM BEOL," IEEE Int. IEDM Tech. Dig., San Francisco, CA, USA, Dec. 10-13, 2012, pp. 3.3.1-3.3.4. 

  7. L.F. Mao, H. Ning, and J.Y. Wang, "The Current Collapse in AlGaN/GaN High-Electron Mobility Transistors Can Originate from the Energy Relaxation of Channel Electrons," PloS one, vol. 10, no. 6, June 2016, pp. 1-9. 

  8. L.F. Mao et al., "Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors," Sci. Rep., vol. 5, Dec. 2015, pp. 1-11. 

  9. L.F. Mao et al., "Physical Modeling of Activation Energy in Organic Semiconductor Devices Based on Energy and Momentum Conservations," Sci. Rep., vol. 6, Apr. 2016, pp. 1-12. 

  10. V.T. Dolgopolov et al., "Energy Relaxation Time in a Two-Dimensional Electron Gas at a (001) Surface of Silicon," J. Experimental Theoretical Phy., vol. 62, no. 6, Dec. 1985, pp. 1219-1224. 

  11. N. Balkan, Hot Electrons in Semiconductors: Physics and Devices, Oxford, UK: Oxford University Press, 1998, p. 385. 

  12. C. Canali et al., "Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature," IEEE Trans. Electron. Devices, vol. 22, no. 11, Nov. 1975, pp. 1045-1047. 

  13. C.G. Sodini, P.K. Ko, and J.L. Moll, "The Effect of High Fields on MOS Device and Circuit Performance," IEEE Trans. Electron. Devices, vol. 31, no. 10, Oct. 1984, pp. 1386-1393. 

  14. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. Hoboken, NJ, USA: Wiley, 1996. 

  15. A. Ruangphanit et al., "Substrate Bias Effects on Drain Induced Barrier Lowering (DIBL) in Short Channel NMOS FETs," Australian J. Basic Appl. Sci., vol. 3, no. 3, July 2009, pp. 1640-1644. 

  16. A. Ruangphanit, M. Rangson, and V. Poyai, "The Parameters Mismatch Model of Threshold Voltage for the Narrow and Short Channel MOSFET," J. Appl. Sci. Res., vol. 3, no. 1, Jan. 2006, pp. 13-16. 

  17. K.K. Young, "Short-Channel Effect in Fully Depleted SOI MOSFETs," IEEE Trans. Electron. Devices, vol. 36, no. 2, Feb. 1989, pp. 399-402. 

  18. S. Lee et al., "SPICE-Compatible New Silicon Nanowire Field-Effect Transistors (SNWFETs) Model," IEEE Trans. Nanotechnol., vol. 8, no. 5, Oct. 2009, pp. 643-649. 

  19. R. Muanghlua, N. Vittayakorn, and A. Ruangphanit, "Channel Engineering for Submicron N-Channel MOSFET Based on TCAD Simulation," Australian J. Basic Appl. Sci., vol. 2, no. 3, Jan. 2008, pp. 406-411. 

  20. K. Aoki, Nonlinear Dynamics and Chaos in Semiconductors, Boca Raton, FL, USA: CRC Press, 2000, p. 38. 

  21. A.J. Sabbah and D.M. Riffe, "Femtosecond Pump-Probe Reflectivity Study of Silicon Carrier Dynamics," Phys. Rev. B, vol. 66, no. 16, Oct. 2002, p. 165217. 

  22. H. Batwani, M. Gaur, and M.J. Kumar, "Analytical Drain Current Model for Nanoscale Strained-Si/SiGe MOSFETs," Int. J. Comput. Math. Electr. Electron. Eng., vol. 28, no. 2, Mar. 2009, pp. 353-371. 

  23. C. Jacoboni et al., "A Review of Some Charge Transport Properties of Silicon," Solid-State Electron., vol. 20, no. 2, Feb. 1977, pp. 77-89. 

  24. M. Singh and A.K. Rana, "Study of Short Channel Effects on FDSOI MOSFET in Nano Regime-TCAD Simulation," ITSI TEEE, vol. 1, no. 6, Dec. 2013, pp. 27-30. 

  25. S.C. Brugger and A. Schenk, "First-Principle Computation of Relaxation Times in Semiconductors for Low and High Electric Fields," Int. Conf. Simulation Semicond. Process. Devices, Tokyo, Japan, Sept. 1-3, 2005, pp. 151-154. 

  26. K. Chain et al., "A MOSFET Electron Mobility Model of Wide Temperature Range (77-400 K) for IC Simulation," Semicond. Sci. Technol., vol. 12, no. 4, Apr. 1997, pp. 355-359. 

  27. O. Semenov, A. Vassighi, and M. Sachdev, "Leakage Current in Sub-quarter Micron MOSFET: a Perspective on Stressed Delta I DDQ Testing," J. Electron. Test., vol. 19, no. 3, June 2003, pp.341-352. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로