$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Biotransformation of Fructose to Allose by a One-Pot Reaction Using Flavonifractor plautii ᴅ-Allulose 3-Epimerase and Clostridium thermocellum Ribose 5-Phosphate Isomerase 원문보기

Journal of microbiology and biotechnology, v.28 no.3, 2018년, pp.418 - 424  

Lee, Tae-Eui (Department of Bioscience and Biotechnology, Konkuk University) ,  Shin, Kyung-Chul (Department of Bioscience and Biotechnology, Konkuk University) ,  Oh, Deok-Kun (Department of Bioscience and Biotechnology, Konkuk University)

Abstract AI-Helper 아이콘AI-Helper

${\text\tiny{D}}-Allose$ is a potential medical sugar because it has anticancer, antihypertensive, antiinflammatory, antioxidative, and immunosuppressant activities. Allose production from fructose as a cheap substrate was performed by a one-pot reaction using Flavonifractor plautii ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The thermostability was examined with 0.1 g/l FP-DAE and 12 g/l CT-RPI, and the half-lives at 50°C, 55°C, 60°C, 65°C and 70°C were 15.1, 9.3, 3.3, 0.9 and 0.3 h, respectively.
  • To determine the buffer type and the presence or absence of Co2+ of the one-pot reaction at pH 7.5 and 60°C, the effects of buffer type (PIPES or Tris-HCl buffer) and Co2+ on the production of allose from fructose by FP-DAE and CT-RPI were investigated.
  • To determine the buffer type and the presence or absence of Co2+ of the one-pot reaction by FP-DAE and CT-RPI at pH 7.5 and 60°C, the reactions were performed with 600 g/l D-fructose in 50 mM piperazine-N,N’-bis(2-ethanesulfonic acid) (PIPES) and Tris-HCl buffers in the presence and absence of 1 mM Co2+.
본문요약 정보가 도움이 되었나요?

참고문헌 (21)

  1. Xu W, Zhang W, Zhang T, Jiang B, Mu W. 2016. $\small{L}$ -Rhamnose isomerase and its use for biotechnological production of rare sugars. Appl. Microbiol. Biotechnol. 100: 2985-2992. 

  2. Lim YR, Oh DK. 2011. Microbial metabolism and biotechnological production of $\small{D}$ -allose. Appl. Microbiol. Biotechnol. 91: 229-235. 

  3. Morimoto K, Park CS, Ozaki M, Takeshita K, Shimonishi T, Granstrom TB, et al. 2006. Large scale production of $\small{D}$ -allose from $\small{D}$ -psicose using continuous bioreactor and separation system. Enzyme Microb. Technol. 38: 855-859. 

  4. Menavuvu BT, Poonperm W, Leang K, Noguchi N, Okada H, Morimoto K, et al. 2006. Efficient biosynthesis of $\small{D}$ -allose from $\small{D}$ -psicose by cross-linked recombinant $\small{L}$ -rhamnose isomerase: separation of product by ethanol crystallization. J. Biosci. Bioeng. 101: 340-345. 

  5. Poonperm W, Takata G, Okada H, Morimoto K, Granstrom TB, Izumori K. 2007. Cloning, sequencing, overexpression and characterization of $\small{L}$ -rhamnose isomerase from Bacillus pallidus Y25 for rare sugar production. Appl. Microbiol. Biotechnol. 76: 1297-1307. 

  6. Lin CJ, Tseng WC, Lin TH, Liu SM, Tzou WS, Fang TY. 2010. Characterization of a thermophilic $\small{L}$ -rhamnose isomerase from Thermoanaerobacterium saccharolyticum NTOU1. J. Agric. Food Chem. 58: 10431-10436. 

  7. Lin CJ, Tseng WC, Fang TY. 2011. Characterization of a thermophilic $\small{L}$ -rhamnose isomerase from Caldicellulosiruptor saccharolyticus ATCC 43494. J. Agric. Food Chem. 59: 8702-8708. 

  8. Bai W, Shen J, Zhu YM, Men Y, Sun YX, Ma YH. 2015 . Characteristics and kinetic properties of $\small{L}$ -rhamnose isomerase from Bacillus subtilis by isothermal titration calorimetry for the production of $\small{D}$ -allose. Food Sci. Technol. Res. 21: 13-22. 

  9. Feng Z, Mu W, Jiang B. 2013. Characterization of ribose-5-phosphate isomerase converting $\small{D}$ -psicose to $\small{D}$ -allose from Thermotoga lettingae TMO. Biotechnol. Lett. 35: 719-724. 

  10. Yeom SJ, Seo ES, Kim YS, Oh DK. 2011. Increased D-allose production by the R132E mutant of ribose-5-phosphate isomerase from Clostridium thermocellum. Appl. Microbiol. Biotechnol. 89: 1859-1866. 

  11. Park CS, Yeom SJ, Kim HJ, Lee SH, Lee JK, Kim SW, et al. 2007. Characterization of ribose-5-phosphate isomerase of Clostridium thermocellum producing $\small{D}$ -allose from $\small{D}$ -psicose. Biotechnol. Lett. 29: 1387-1391. 

  12. Hossain A, Yamaguchi F, Matsuo T, Tsukamoto I, Toyoda Y, Ogawa M, et al. 2015 . Rare sugar $\small{D}$ -allulose: potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacol. Ther. 155: 49-59. 

  13. Chung MY, Oh DK, Lee KW. 2012. Hypoglycemic health benefits of $\small{D}$ -psicose. J. Agric. Food Chem. 60: 863-869. 

  14. Takeshita K, Suga A, Takada G, Izumori K. 2000. Mass production of $\small{D}$ -psicose from $\small{D}$ -fructose by a continuous bioreactor system using immobilized $\small{D}$ -tagatose 3-epimerase. J. Biosci. Bioeng. 90: 453-455. 

  15. Zhang LT, Mu WM, Jiang B, Zhang T. 2009. Characterization of $\small{D}$ -tagatose-3-epimerase from Rhodobacter sphaeroides that converts $\small{D}$ -fructose into $\small{D}$ -psicose. Biotechnol Lett. 31: 857-862. 

  16. Kim HJ, Hyun EK, Kim YS, Lee YJ, Oh DK. 2006. Characterization of an Agrobacterium tumefaciens $\small{D}$ -psicose 3-epimerase that converts $\small{D}$ -fructose to $\small{D}$ -psicose. Appl. Environ. Microbiol. 72: 981-985. 

  17. Lim BC, Kim HJ, Oh DK. 2009. A stable immobilized $\small{D}$ -psicose 3-epimerase for the production of $\small{D}$ -psicose in the presence of borate. Process Biochem. 44: 822-828. 

  18. Zhu Y, Men Y, Bai W, Li X, Zhang L, Sun Y, et al. 2012. Overexpression of $\small{D}$ -psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in $\small{D}$ -psicose production. Biotechnol. Lett. 34: 1901-1906. 

  19. Mu W, Zhang W, Fang D, Zhou L, Jiang B, Zhang T. 2013. Characterization of a $\small{D}$ -psicose-producing enzyme, $\small{D}$ -psicose 3-epimerase, from Clostridium sp. Biotechnol. Lett. 35: 1481-1486. 

  20. He W, Mu W, Jiang B, Yan X, Zhang T. 2016. Construction of a food grade recombinant Bacillus subtilis based on replicative plasmids with an auxotrophic marker for biotransformation of $\small{D}$ -fructose to $\small{D}$ -allulose. J. Agric. Food Chem. 64: 3243-3250. 

  21. Park CS, Kim T, Hong SH, Shin KC, Kim KR, Oh DK. 2016. $\small{D}$ -Allulose production from $\small{D}$ -fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing $\small{D}$ -allulose 3-epimerase Flavonifractor plautii. PLoS One 11: e0160044. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로