$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abscisic acid 농도에 따른 밀 종자의 발아와 단백질체의 발현 특성
Germination and Proteome Profile Characteristics of Wheat Seeds Treated under Different Concentrations of Abscisic Acid 원문보기

Korean journal of crop science = 韓國作物學會誌, v.63 no.1, 2018년, pp.25 - 34  

정재혁 (농촌진흥청 국립식량과학원 작물재배생리과) ,  김대욱 (농촌진흥청 국립식량과학원 작물재배생리과) ,  황운하 (농촌진흥청 국립식량과학원 작물재배생리과) ,  안승현 (농촌진흥청 국립식량과학원 작물재배생리과) ,  정한용 (농촌진흥청 국립식량과학원 작물재배생리과) ,  이현석 (농촌진흥청 국립식량과학원 작물재배생리과) ,  최인배 (농촌진흥청 국립식량과학원 작물재배생리과) ,  최경진 (농촌진흥청 국립식량과학원 작물재배생리과) ,  윤종탁 (농촌진흥청 국립식량과학원 작물재배생리과) ,  윤성중 (전북대학교 농업생명과학대학 작물생명과학과)

초록
AI-Helper 아이콘AI-Helper

휴면성이 다른 백중밀, 금강밀, 우리밀 후숙종자의 ABA 농도에 따른 발아 및 배아에서의 단백질체 발현 특성을 조사한 결과는 다음과 같다. 1. 백중밀, 금강밀, 우리밀 등 3품종의 0, 10, 30 및 $50{\mu}M$ ABA에서의 평균 발아지수와 발아율은 각각 0.95와 98% 이상으로 통계적으로 유의한 차이가 없었다. 유아와 유근의 생장은 $0{\mu}M$ ABA보다 10, 30 및 $50{\mu}M$ ABA에서 생장이 크게 억제되었는데, ABA 농도가 높을수록 생장이 더 억제되었다. 2. 3품종 배아의 평균 ABA 함량은 $0{\mu}M$ ABA와 $50{\mu}M$ ABA에서 각각 0.78 ng/mg과 269.04 ng/mg으로서 농도에 따른 ABA 함량의 차이가 컸다. 3. $0{\mu}M$ ABA 처리구에 비하여 $50{\mu}M$ ABA 처리구에서 발현양이 증가한 단백질 spot (S1, S3, S4, S6, S15, S16, S17)은 7개였으며, 감소한 단백질 spot (S2, S5, S9, S10, S11, S12, S13, S14, S18)은 8개였고, 증가와 감소가 동시에 이루어진 단백질 spot (S2)은 1개였다. $50{\mu}M$ ABA에서만 검출된 단백질 spot (S7, S8)은 2개였다. 4. 각 단백질 spot의 $0{\mu}M$ ABA 처리구 양에 대한 $50{\mu}M$ ABA 처리구 양의 평균 배수 값(fold 값)이 1.5배 이상으로 증가한 단백질 spot은 S1 (globulin-3A), S6 (globulin-1 S allele), S16 (globulin-1 S allele), S17 (globulin-1 S allele) 등으로 모두 globulin류 단백질이었다. 또한 $50{\mu}M$ ABA에서만 확인된 단백질 spot인 S7 (globulin 3)과 S8 (globulin-1 S allele)도 globulin 단백질이었다. 5. 각 단백질 spot의 $0{\mu}M$ ABA 처리구 양에 대한 $50{\mu}M$ ABA 처리구 양의 평균 배수 값(fold 값)이 0.7 이하로 감소한 단백질 spot은 S10 (glutamine sysnthetase cytosolic isozyme), S12 (S-adenosylmethionine synthetase 2), S14 (isocitrate dehydrogenase NADP)이었다. 이상의 결과는 ABA에 의한 밀 유묘의 유아와 유근의 생장억제는 배아에서의 ABA 농도 증가, 그리고 이에 따른 배아의 glutamine 합성에 관여하는 다양한 효소의 발현 감소 및 메틸기공여물질의 감소와 이에 따른 메틸기 전이활성의 감소 등이 관여하고 있음을 의미한다. 한편 배아에서의 ABA에 의한 globulin 단백질의 증가는 배아 특이적 globulin의 일시적 합성 증가와 globulin 분해 효소의 활성 억제 등이 복합적으로 관여한 결과로 생각된다.

Abstract AI-Helper 아이콘AI-Helper

This study was conducted to investigate the germination and proteome profile characteristics of wheat seeds treated under various concentrations of abscisic acid (ABA). After-ripening, the seeds of three wheat cultivars (Baegjoong, Keumkang, and Uri) showing different levels of dormancy were used. G...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • ABA는 밀 종자의 휴면과 발아에 영향을 주는 중요한 호르몬이지만, 발아 과정 중에 배아에서 ABA와 반응하여 어떤 단백질이 증가하거나 감소하는지에 대한 연구는 거의 없다. 따라서 본 연구는 ABA가 밀에서 발아와 발아 종자의 배아 내의 단백질체 발현에 미치는 영향을 조사하고 생리적 특성을 이해하고자 수행하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
저농도에서 종자의 휴면을 적극적으로 유도하고 종자의 발아를 억제하는 식물호르몬은? , 2013). ABA는 저농도에서 종자의 휴면을 적극적으로 유도하고 종자의 발아를 억제하는 식물호르몬이다 (Kucera et al., 2005; Yu et al.
다수 다종의 단백질체를 분석하면 종자의 다양한 생리적 현상의 인과관계를 이해하는데 도움이 되는 이유는 무엇인가? 종자의 발아와 휴면 등은 유전적 및 환경적 요인의 영향에 의해 생성된 다양한 종류의 단백질들에 의해 표현되고 조절되는 생리적 현상이다. 따라서 다수 다종의 단백질들의 집단(단백질체, proteome)을 분석하면 다양한 생리적 현상의 인과관계를 이해하는데 필요한 정보를 얻을 수 있다 (Bove et al.
밀이란 무엇인가? 밀은 전 세계적으로 재배되고 있는 가장 중요한 작물 중의 하나이고, 세계인구 40% 이상의 주요 식량 자원이다(Shewry, 2009). 종자 휴면은 유리한 조건에서 손상되지 않은 살아있는 종자의 발아를 막는 적응 형질인데(Hihorst, 1995), 밀은 신속하고 균일한 발아를 얻기 위해 종자의 휴면이 약한 자원이 선택되는데, 이로 인하여 수확 전에 습한 조건에서 발아하는 수발아에 대한 감수성이 증가한다(Simpson, 1990).
질의응답 정보가 도움이 되었나요?

참고문헌 (40)

  1. Bove, J., P. Lucas, B. Godin, L. Oge, M. Jullien, and P. Grappin. 2005. Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol. Biol. 57(4) : 593-612. 

  2. Chen, Y., T. Zou, S. and McCormick. 2016. S-adenosylmethionine synthetase 3 is important for pollen tube growth. Plant Physiol. doi: org/10.1104/pp.16.00774. 

  3. Da Silva, E. A. A., P. E. Toorop, A. A. M. Van Lammeren, and H. W. M. Hilhorst. 2008. ABA inhibits embryo cell expansion and early cell division events during coffee (Coffea arabica 'Rubi') seed germination. Ann. Bot.-London 102(3) : 425-433. 

  4. Galvez, S., M. Lancien, and M. Hodges. 1999. Are isocitrate dehydrogenases and 2-oxoglutarate involved in the regulation of glutamate synthesis? Trends Plant Sci. 4(12) : 484-490. 

  5. Glevarec, G., S. Bouton, E. Jaspard, M.-T. Riou, J.-B. Cliquet, A. Suzuki, and A. M. Limami. 2004. Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula. Planta 219(2) : 286-297. 

  6. Gomez-Cadenas, A., R. Zentella, M. K. Walker-Simmons, and T.-H. D. Ho. 2001. Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. The Plant Cell 13(3) : 667-679. 

  7. Guan, M., I. S. Moller, and J. K. Schjoerring. 2015. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis. J. Exp. Bot. 66(1) : 203-212. 

  8. He, M., C. Zhu, K. Dong, T. Zhang, Z. Cheng, J. Li, and Y. Yan. 2015. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC Plant Biol. 15 : 97. 

  9. Hihorst H. W. M. 1995. A critical update on seed dormancy. I. Primary dormancy. Seed Sci. Res. 5 : 61-73. 

  10. Hirel, B., A. Martin, T. Terce­Laforgue, M. B. Gonzalez­Moro, and J. M. Estavillo. 2005. Physiology of maize I: a comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol. Plant. 124(2) : 167-177. 

  11. Kacem, N. S., S. Mauro, Y. Muhovski, F. Delporte, J. Renaut, A. Djekoun, and B. Watillon. 2016. Diagonal two-dimensional electrophoresis (D-2DE): a new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.). Mol. Biol. Rep. 43(9) : 897-909. 

  12. Kim, D. W., H. S. Kim, H. H. Park, J. J. Hwang, S. L. Kim, J. E. Lee, G. H. Jung, T. Y. Hwang, J. T. Kim, S. J. Kim, R. Randeep, and Y. U. Kwon. 2012. Characterization of grain amino acid composition and proteome profile of a high-lysine barley mutant line M98. Korean J. Crop Sci. 57(2) : 171-181. 

  13. Kim, K.-H., C.-S. Kang, J.-C. Park, S.-H. Shin, J.-N. Hyun, and C. S. Park. 2012. Evaluation of pre-harvest sprouting in Korean wheat cultivar. Kor. J. Breed. Sci. 44(4) : 526-537. 

  14. Kim, S. T., S. Y. Kang, W. Wang, S. G. Kim, D. H. Hwang, and K. Y. Kang. 2008. Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8(17) : 3577-3587. 

  15. Koziol, A. G., E. Loit, M. McNulty, A. J. MacFarlane, F. W. Scott, and I. Altosaar. 2012. Seed storage proteins of the globulin family are cleaved post-translationally in wheat embryos. BMC Res. Notes 5 : 385. 

  16. Kucera, B., M. A. Cohn, and G. Leubner-Metzger. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15(4) : 281-307. 

  17. Liu, A., F. Gao, Y. Kanno, M. Jordan, Y. Kamiya, M. Seo, and B. Ayele. 2013. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS One. 8 : 1-18. 

  18. Liu, S. J., H. H. Xu, W. Q. Wang, N. Li, W. P. Wang, I. M. Moller, and S. Q. Song. 2015. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment. Physiol. Plant. 154(1) : 142-161. 

  19. Mares, D. 1998. The seed coat and dormancy in wheat grains. In: WeiprtD (ed) Eighth International Symposium on Pre-harvest Sprouting in Cereals. Association of Cereal Research Federal Centre for Cereal Potato and Lipid Research. Detmold, Germany. pp: 77-81. 

  20. Martinez-Lopez, N., M. Varela-Rey, U. Ariz, N. Embade, M. Vazquez-Chantada, D. Fernandez-Ramos, L. Gomez-Santos, S. C. Lu, J. M. Mato, and M.L. Martinez-Chantar. 2008. S-Adenosylmethionine and proliferation: new pathways, new targets. Biochem. Soc. T. 36 : 848-852. 

  21. Muller, K., S. Tintelnot, and G. Leubner-Metzger. 2006. Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol. 47(7) : 864-877. 

  22. Nyachiro, J. M., F. R. Clarke, R. M. DePauw, R. E. Knox, and K. C. Armstrong. 2002. The effects of cis-trans ABA on embryo germination and seed dormancy in wheat. Euphytica 126(1) : 129-133. 

  23. Pawlowski, T. A. 2007. Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: Influence of abscisic and gibberellic acids. Proteomics 7(13) : 2246-2257. 

  24. Reddy, L., R. Metzger, and T. Ching. 1985. Effect of temperature on seed dormancy of wheat. Crop Sci. 25(3) : 455-458. 

  25. Roje S. 2006. S-Adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry 67: 1686-1698. 

  26. Saeedipour, S. 2013. Relationship of Grain Yield, ABA and proline accumulation in tolerant and sensitive wheat cultivars as affected by water stress. PNAS India B. 83(3) : 311-315. 

  27. Schlereth, A., C. Becker, C. Horstmann, J. Tiedemann, and K. Muntz. 2000. Comparison of globulin mobilization and cysteine proteinases in embryonic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.). J. Exp. Bot. 51(349) : 1423-1433. 

  28. Sharma, S., H. Dhaliwal, D. Multani, and S. Bains. 1994. Inheritance of preharvest sprouting tolerance in Triticum aestivum and its transfer to an amber-grained cultivar. J. Heredity 85(4) : 312-314. 

  29. Shen, B., C. Li, and M. C. Tarczynski. 2002. High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J. 29 : 371-380. 

  30. Shevchenko, A., H. Tomas, J. Havlis, J. V. Olsen, and M. Mann. 2007. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1(6) : 2856-2860. 

  31. Shewry P. R. 2009. Wheat. J. Exp. Bot. 60(6) : 1537-1553. 

  32. Simpson G. M. 1990. Seed Dormancy in Grasses. Cambridge University Press. Cambridge. UK. 

  33. Tanaka, N., H. Konishi, M. M. K. Khan, and S. Komatsu. 2004. Proteome analysis of rice tissues by two-dimensional electrophoresis: an approach to the investigation of gibberellin regulated proteins. Mol. Genet. Genomics 270(6) : 485-496. 

  34. Walker-Simmons, M. 1987. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol. Bioch. 84(1) : 61-66. 

  35. Westermeier, R., T. Naven, and H.-R. Hopker. 2008. Proteomics in Practice : A Guide to Successful Experimental Design, 2nd, Completely Revised Edition. Wiley-VCH, Germany. pp: 309-356. 

  36. Wolukau, J. N., S. L. Zhang, G. H. Xu, and D. Chen. 2004. The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume. Sci. Hort. 99 : 289-299. 

  37. Yang, Weibing, T. Cai, Y. Li, J. Guo, D. Peng, D. Yang, Y. Yin, and Z. Wang. 2013. Effects of exogenous abscisic acid and gibberellic acid on filling process and nitrogen metabolism characteristics in wheat grains. Aust. J. Crop. Sci. 7(1) : 58-65. 

  38. Yu, H., L. L. Wang, X. Y. Chen, Y. Yang, X. R. Yu, Z. Wang, and F. Xiong. 2016. Effects of exogenous gibberellic acid and abscisic acid on germination, amylases, and endosperm structure of germinating wheat seeds. Seed Sci. Technol. 44(1) : 64-76. 

  39. Yu, Y. L., S. M. Zhen, S. Wang, Y. P. Wang, H. Cao, Y. Z. Zhang, J. R. Li, and Y. M. Yan. 2016. Comparative transcriptome analysis of wheat embryo and endosperm responses to ABA and $H_2O_2$ stresses during seed germination. BMC Genomics 17(1) : 97. 

  40. Zhang, X., S. Liu, and T. Takano. 2008. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol. Biol. 68(1-2) : 131-143. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로