$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

변색기 고온에 의한 '거봉' 및 '흑보석' 포도의 과피 안토시아닌 조성 변화
Changes of Fruit Quality and Anthocyanin Composition of 'Kyoho' and 'Heukboseok' Grape Berry Skins under High Temperature at Veraison 원문보기

시설원예ㆍ식물공장 = Protected horticulture and plant factory, v.27 no.3, 2018년, pp.213 - 221  

류수현 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ,  한점화 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ,  한현희 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ,  정재훈 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ,  조정건 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ,  도경란 (농촌진흥청 국립원예특작과학원 원예작물부 과수과)

초록
AI-Helper 아이콘AI-Helper

여름철 고온으로 인해 '거봉' 포도의 착색 불량이 나타나는 원인을 안토시아닌 조성의 변화로부터 구명하기 위해 본 실험을 수행하였으며, 같은 대립계 포도 품종인 '흑보석'의 과실 품질과 안토시아닌의 변화를 함께 비교하였다. 착색 초기부터 30일 동안의 고온 처리에 의해 '거봉'과 '흑보석' 모두에서 과피의 착색이 감소하였지만, '흑보석'은 온도 처리의 종료 이후 안토시아닌 함량이 대조구의 수준으로 증가하였고, '거봉'은 착색이 정지된 상태로 안토시아닌 함량이 증가하지 못했다. 고온에 의해 '거봉'의 안토시아니딘Mal, Del, Pet의 순으로 크게 감소하였으며, 개별 성분으로는 diglucoside 및 Malacylated 형태가 가장 크게 감소하였다. 안토시아닌의 형태별 함량을 비교한 결과, '거봉' 과피에서 고온에 의해 acylated 형태가 non-acylated 형태에 비해서 더 크게 감소하였고, B ring의 tri-hydroxylated 형태가 di-hydroxylated 형태보다 더 큰 비율로 감소하였다. '거봉'에서 모든 그룹의 안토시아닌 함량이 총 안토시아닌과 비슷한 경향으로 감소하였고, '흑보석'에서는 모든 그룹의 합성이 고온에 의해 억제되었다가 온도 처리가 종료된 이후 대조구의 수준으로 회복되었다. 따라서 착색 초기의 고온에 의한 '거봉'의 착색 불량은 특정 안토시아닌의 감소에 의한 것이 아니라, 전체적인 안토시아닌의 생합성 자체가 고온에 의해 억제되었기 때문으로 판단되었다.

Abstract AI-Helper 아이콘AI-Helper

We analyzed the skin coloration and anthocyanin composition of 'Kyoho' and 'Heukboseok' grape berries to determine the cause of poor coloring in 'Kyoho' berry skins under high temperature (HT) at veraison. Although the skin coloration inhibited in both 'Kyoho' and 'Heukboseok' berries under HT for 3...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구는 착색 개시기 고온에 의한 ‘거봉’의 착색 불량에 안토시아닌의 조성이 미치는 영향을 구명하기 위해서 수행되었으며, 비교를 위해 고온에서도 상대적으로 착색이 잘 이루어진다고 알려진 ‘흑보석’ 포도를 함께 처리하여 분석하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
포도에 존재하는 안토시아니딘의 종류는? 안토시아닌은 당과 배당체인 안토시아니딘의 결합으로 합성되며, 포도에는 pelargonidin(Pel), cyanidin(Cya), delphinidin(Del), peonidin(Peo), petunidin(Pet), malvidin(Mal)의 6가지의 안토시아니딘이 존재한다(Holton과 Cornish, 1995). 이 중에서 Mal이 대부분의 품종에서 가장 많은 비율을 차지하며, Pel은 극히 적은 양으로 존재하여 일반적으로 관찰되지 않는다(He 등, 2010a).
착색계 포도의 과피 색을 결정짓는 요인은? 과피의 색은 포도의 품질을 결정하는 중요한 요소 중의 하나이다. 착색계 포도의 과피 색은 안토시아닌의 함량 및 조성에 의해서 달라지며(Castellarin과 Gaspero, 2007), 이는 품종 고유의 유전적인 특성 및 환경적인 요인에 의해 결정된다(He 등, 2010b).
고온 처리에 의한 시기별 ‘거봉’의 과피 변화는? 고온 처리에 의한 시기별 과피의 변화를 관찰한 결과, 고온 처리 2주 후부터 ‘거봉’의 착색 속도가 느려지기 시작하며 대조구에 비해 2주 이상 늦어지는 모습을 보였다(Fig. 1).
질의응답 정보가 도움이 되었나요?

참고문헌 (18)

  1. Azuma A., Yakushiji H., Koshita Y., and S. Kobayashi. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236(4):1067-1080. 

  2. Castellarin S.D., and G.D. Gaspero. 2007. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol. 7(1):46. 

  3. Gomez C., Terrier N., Torregrosa L., Vialet S., Fournier-Level A., Verries C., Souquet J.M., Mazauric J.P., Klein M., Cheynier V., and A. Ageorges. 2009. Grapevine MATE-type proteins act as vacuolar $H^+$ -dependent acylated anthocyanin transporters. Plant Physiol. 150(1):402-415. 

  4. He F., He J.J., Pan Q.H., and C.Q. Duan. 2010a. Mass-spectrometry evidence confirming the presence of pelargonidin-3-O-glucoside in the berry skins of Cabernet Sauvignon and Pinot Noir (Vitis vinifera L.). Aust. J. Grape Wine Res. 16(3):464-468. 

  5. He F., Mu L., Yan G.L., Liang N.N., Pan Q.H., Wang J., Reeves M.J., and C.Q. Duan. 2010b. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15(12):9057-9091. 

  6. Holton T.A. and E.C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7(7):1071-1083. 

  7. Kallam K., Appelhagen I., Luo J., Albert N., Zhang H., Deroles S., Hill L., Findlay K., Andersen O.M., Davies K., and C. Martin. 2017. Aromatic decoration determines the formation of anthocyanic vacuolar inclusions. Curr. Biol. 27(7):945-957. 

  8. Koshita Y., Mitani N., Azuma A., and H. Yakushiji. 2015. Effects of short-term temperature treatment to clusters on anthocyanin and abscisic acid content in the peel of 'Aki Queen' grape. Vitis 54(4):169-173. 

  9. Lee, K., H.J. Baek, S. Park, H.S. Kang, and C.H. Cho. 2012. Future projection of changes in extreme temperatures using high resolution regional climate change scenario in the Republic of Korea. J. Kor. Geogr. Soc. 47: 208-225 (in Korean). 

  10. Mazza G. and F.J. Francis. 1995. Anthocyanins in grapes and grape products. Crit. Rev. Food Sci. Nutr. 35(4):341-371. 

  11. Mori K., Sugaya S., and H. Gemma. 2004. Regulatory mechanism of anthocyanin biosynthesis in 'Kyoho' grape berries grown under different temperature conditions. Environ. Contr. Biol. 42(1):21-30. 

  12. Mori K., Goto-Yamamoto N., Kitayama M., and K. Hashizume. 2007. Effect of high temperature on anthocyanin composition and transcription of flavonoid hydroxylase genes in 'Pinot noir' grapes (Vitis vinifera). J. Hort. Sci. Biotech. 82(2):199-206. 

  13. De Rosas I. Ponce M.T., Malovini E., Deis L., Cavagnaro B., and P. Cavagnaro. 2017. Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions. Plant Sci. 258:137-145. 

  14. Ryu, S., Y. Kwon, K.R., Do, J.H., Han, H.H., Han, and H.C. Lee. 2015. Physiological responses and fruit quality changes of 'Fuji' apple under the high night temperature. Protected Hort. Plant Fac. 24(3):264-270. 

  15. Sadras V.O., and M.A. Moran. 2012. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust. J. Grape Wine Res. 18(2):115-122. 

  16. Shinomiya R., Fujishima H., Muramoto K., and M. Shiraishi. 2015. Impact of temperature and sunlight on the skin coloration of the 'Kyoho' table grape. Sci. Hort. 193:77-83. 

  17. Tamura H., Hayashi Y., Sugisawa H., and T. Kondo. 1994. Structure determination of acylated anthocyanins in Muscat Bailey a grapes by homonuclear Hartmann-Hahn (HOHAHA) spectroscopy and liquid chromatography-mass spectrometry. Phytochem. Anal. 5(4):190-196. 

  18. Tarara J.M., Lee J., Spayd S.E., and C.F. Scagel. 2008. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am. J. Enol. Vitic. 59(3):235-247. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로