$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

강우유발 면상흐름에 의한 세류간 침식에 대한 유효동력
Effective power for interrill erosion by rainfall-induced sheet flow 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.51 no.8, 2018년, pp.665 - 676  

신승숙 (강릉원주대학교 수충부 및 토석류 방재기술연구단) ,  박상덕 (강릉원주대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

사면에서의 세류간 토양침식은 빗물방울의 지표면 타격에 의한 토양입자의 박리와 면상흐름에 의한 토사이송의 상호작용에 의한 결과이다. 본 연구는 토양입자를 박리하는 강우동력과 유사이송에 기여하는 면상흐름동력을 토양침식을 위한 에너지 소비율 측면에서 새롭게 정의하고, 강우유발 면상흐름에 의한 세류간 토양침식의 유효동력 함수를 제시하였다. 강우, 경사, 유출과 관계된 인자들에 따른 강우 면상흐름의 동력을 평가하고, 기존 연구 자료를 바탕으로 이 함수의 상수들을 분석하였다. 또한 강우와 면상흐름 동력의 상대적인 크기 변화는 세류간 토양침식의 물리적 과정과 수문학적 반응을 반영함을 확인하였다. 지표유출 및 토양침식 실측자료를 세류간침식 평가 모형들에 적용한 결과 강우 면상흐름동력 함수가 가장 높은 정확도를 보여 세류간 토양침식 평가에 적합하다는 것을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

Interrill erosion on a hillslope results from the combined action of the detachment of soil particles by raindrop impact and the sediment transport of surface runoff. This study newly defined the rainfall power which detaches soil particles and the sheet-flow power contributed to sediment transport ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 단계에서는 강우동력과 면상흐름동력의 상대적인 크기와 역학적 의미를 파악하기 위해 일정한 값의 매개변수를 식에 대입하여 각각의 동력에 대한 상대적인 비율을 확인하고자 한다. 사면 경사는 20°와 25°인 경우이며, 상수 α는 10이고, β는 5인 경우에 대해 유출계수가 0.
  • 본 연구에서는 멱함수 형태의 비시간 강우운동에너지 식을 기반으로 강우동력을 고려하고, 면상흐름을 동력이론에 근거하여 재해석한다. 세류간 침식에 대해 강우와 면상흐름의 유효동력은 토양입자를 상류에서 하류로 이동시키는데 필요한 에너지 소비율에 비례하는 관계로 부터 일반적 강우·면상흐름 동력함수를 제시하고, 이에 대한타당성을 검토하고자 한다.

가설 설정

  • (2009) 모형을 평가하였다. 본 연구에서 토양침식성에 대해 중점을 두고 있지 않기 때문에 침식성인자 Ki는 1로 가정한다. 강우지수를 비롯해 기존 세류간 토양침식 추정 모형들과 강우·면상흐름 동력 함수를 실측 토양침식량과의 상관분석을 수행하였다 (Table 3).
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
면상흐름은 어떤 문제점을 유발하는가? 거친 경사면에서 수심이 얕은 면상흐름(sheet flow)은 그물과 같은 유로 망이 광범위하게 형성되는 지표유출의 한 형태를 보인다. 이러한 면상흐름은 빗방울이 지면을 직접 타격 하는 공간을 제공하고, 타격 과정에서 난류를 강화시켜 더 많은 토양침식을 일으킨다(Palmer, 1964). 수심이 증가하면 강우의 지표타격과 빗물튀김(raindrop splash)에 의한 토양입자의 분리(detachment) 현상은 줄어든다(Torri et al.
거친 경사면에서 수심이 얕은 면상흐름(sheet flow)은 어떤 형태를 보이는가? 거친 경사면에서 수심이 얕은 면상흐름(sheet flow)은 그물과 같은 유로 망이 광범위하게 형성되는 지표유출의 한 형태를 보인다. 이러한 면상흐름은 빗방울이 지면을 직접 타격 하는 공간을 제공하고, 타격 과정에서 난류를 강화시켜 더 많은 토양침식을 일으킨다(Palmer, 1964).
강우입자의 충돌과 면상흐름의 상호작용에 의해 발생하는 세류간 토양침식에 있어서 강우충격과 면상흐름의 상대적인 토양침식 기여도에 대한 연구가 많지 않은 이유는? , 2015). 이를 분리하는 것이 용이하지도 않을 뿐더러, 이들의 상호작용이 에너지를 감소시켜 토양침식에 직접적으로 영향을 끼치기 때문이다. 위에서 제시한 강우·면상흐름 동력 식에서 상수 α, β는 강우운동에너지와 유출수운동에 너지에 의한 토양침식의 기여도 평가의 지표가 될 수 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (62)

  1. Atlas, D., and Ulbrich, C. W. (1977). "Path- and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band." Journal of Applied Meteorology, Vol. 16, No. 12, pp. 1322-1331. 

  2. Bagnold, R. A. (1966). An approach to the sediment transport problem from general physices. U.S. Geological Survey Professional Paper 422-J. 

  3. Baruah, P. C. (1973). An investigation of drop size distribution of rainfall in Thailand. MSc Thesis No. 528, Asian Institute of Technology, Bangkok. 

  4. Brandt, C. J. (1990). "Simulation of the size distribution and erosivity of raindrops and throughfall drops." Earth Surface Processes and Landforms, Vol. 15, No. 8, pp. 687-698. 

  5. Brown, L. C., and Foster, G. R. (1987) "Storm erosivity using idealized intensity distributions." Transactions of the ASAE, Vol. 30, pp. 379-386. 

  6. Bryan, R. B. (1974). "Water erosion by splash and wash and the erodibility of Albertan soils." Geografiska Annaler. Series A, Physical Geography, Vol. 56, No. 3/4, pp. 159-181. 

  7. Bryan, R. B., and Luk, S. H. (1981). "Laboratory experiments on the variation of soil erosion under simulated rainfall." Geoderma, Vol. 26, No. 4, pp. 245-265. 

  8. Carter, C. E., Greer, J. D., Braud, H. J., and Floyd, J. M. (1974). "Raindrop characteristics in south central United States." Transactions of the ASAE, Vol. 17, pp. 1033-1037. 

  9. Chang, H. H. (1979). "Geometry of rivers in regime." Journal of the Hydraulics Division American Society of Civil Engineers, Vol. 105, No. HY6, pp. 691-706. 

  10. Coutinho, M. A., and Tomas, P. P. (1995). "Characterisation of raindrop size distributions at the Vale Formoso Experimental Erosion Center." CATENA, Vol. 25, No. 1-4, pp. 187-197. 

  11. Elliot, W. J., Luce, C. H., and Robichaud, P. R. (1996). "Predicting sedimentation from timber harvest areas with the wepp model." Proceedings 6th Federal Interagency Sedimentation Conference, March 10-14, Las Vegas, N.V., pp. IX-46-53. 

  12. Emmett, W. W. (1970). The hydraulics of overland flow on hillslopes. USGS Professional Paper 662A. U.S. Government Printing Office, Washington, DC. 

  13. Ferro V. (1998). "Evaluating overland flow sediment transport capacity." Hydrological Processes, Vol. 12, No. 12, pp. 1895-1910. 

  14. Flanagan, D. C., and Nearing, M. A. (Eds.)(1995). USDA-Water Erosion Prediction Project: technical documentation. NSERL Rep. No. 10. National Soil Erosion Research Laboratory, West Lafayette, IN. 

  15. Fornis, R. L., Vermeulen, H. R., and Nieuwenhuis, J. D. (2005). "Kinetic energy-rainfall intensity relationship for Central Cebu, Philippines for soil erosion studies." Journal of Hydrology, Vol. 300, No. 1-4, pp. 20-32. 

  16. Gabet, E. J., and Dunne D. (2003). "Sediment detachment by rain power." Water Resources Research, Vol. 39, No. 1, pp. 1002. 

  17. Ghahramani, A., Ishikawa, Y., Gomi, T., Shiraki, K., and Miyata, S. (2011). "Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: A plot-scale study." CATENA, Vol. 85, No. 1, pp. 34-47. 

  18. Holton, R. E. (1945). "Erosional development of streams and their drainage basins; Hydrophsical approach to quantitative morphology." Geological Society of America Bulletin, Vol. 56, No. 3, pp. 275-370. 

  19. Hudson, N. W. (1963). "Raindrop size distribution in high intensity storms." Rhodesian Journal of Agricultural Research, Vol. 1, pp. 6-11. 

  20. Kinnell, P. I. A. (1981). "Rainfall intensity-kinetic energy relationship for soil loss prediction." Soil Science Society of America Journal, Vol. 45, No. 1, pp. 153-155. 

  21. Kinnell, P. I. A. (1991). "The effect of flow depth on sediment transport induced by raindrops impacting shallow flows." Transactions of the ASAE, Vol. 34, No. 1, pp. 161-168. 

  22. Kinnell, P. I. A. (1993). "Interrill erodibilities based on the rainfall intensity flow discharge erosivity factor." Australian Journal of Soil Research, Vol. 31, No. 3, pp. 319-332. 

  23. Lee, J. S., and Won, J. Y. (2013). "Analysis of the characteristic of monthly rainfall erosivity in Korea with derivation of rainfall energy equation." Journal of KOSHAM, Vol. 13, No. 3, pp. 177-184. 

  24. Liebenow, A. M., Elliot, W. J., Laflen, J. M., and Kohl, K. D. (1990). "Interrill erodibility: collection and analysis of data from cropland soils." Transactions of the ASAE, Vol. 33, No. 6, pp. 1882-1888. 

  25. Mati, B. M. (1994). "Splash transport of soil on a slope under various crop covers." Agricultural Water Management, Vol. 26, No. 1-2, pp. 59-66. 

  26. McIsaac, G. F. (1990). "Apparent geographic and atmospheric influences on raindrop sizes and rainfall kinetic energy." Journal of Soil and Water Conservation, Vol. 45, No. 6, pp. 663-666. 

  27. Morgan, R. P. C. (1978). Recherches sur l'erosion des sols sableux en Bedfordshire, Angleterre. Paper presented to colloquium on Agricultural Soil Erosion in Temperate Non-Mediterranean Climates, l'Universite Louis Pasteur, Strasbourg. 

  28. Morgan, R. P. C. (1986). Soil erosion and conservation. Longman, Harlow. 

  29. Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., and Styczen, M. E. (1998). "The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments." Earth Surface Processes and Landforms, Vol. 23, No. 6, pp. 527-544. 

  30. Morgan, R. P. D (1980) "Field studies of sediment transport by overland flow." Earth Surface Processes, Vol. 5, No. 4, pp. 307-316. 

  31. Moss, A. J., Walker, P. H., and Hutka, J., (1979). "Raindrop-simulated transportation in shallow water flows: an experimental study." Sedimentary Geology, Vol. 22, No. 3-4, pp. 165-184. 

  32. Nam, M. J., Park, S. D., Lee, S. K. and Shin, S. S. (2015). "Interaction between raindrops splash and sheet flow in interrill erosion of steep hillslopes." J. Korea Water Resour. Assoc., Vol. 48, No. 7, pp. 595-604. 

  33. Nearing, M. A., Wei, H., Stone, J. J., Pierson, F. B., Spaeth, K. E., Weltz, M. A., Flanagan, D. C., and Hernandez, M. (2011). "A rangeland hydrology and erosion model." Transactions of the ASABE, Vol. 54, No. 3, pp. 1-8. 

  34. Palmer, R. S. (1964). "The influence of a thin water layer on water-drop impact forces. International Association of Science of Hydrology." Publication 65, General Assembly, Berkeley. 

  35. Park, S. D., Lee, K. S., and Shin, S. S. (2012). "Statistical soil erosion model for burnt mountain areas in Korea - RUSLE approach." Journal of Hydrologic Engineering, ASCE, Vol. 17, No. 2, pp. 292-304. 

  36. Pearce, A. J. (1976). "Magnitude and frequency of erosion by Hortonian overland flow." Journal of Geology, Vol. 84, No. 1, pp. 65-80. 

  37. Pierson, F. B., Robichaud, P. R., Moffet, C. A., and Spaeth, K. E. (2008). "Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape." Hyrological Processes, Vol. 22, pp. 2916-2929. 

  38. Proffitt, A. P. B., and Rose, C. W. (1991). "Soil erosion processes. I. The relative importance of rainfall detachment and runoff entrainment." Aust. J. Soil Res., Vol. 29, pp. 671-683. 

  39. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C. (1997). "Prediction soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)", USDA Agricultural Handbook No. 703. USDA, Washington, DC. 

  40. Rosewell, C. J. (1986). "Rainfall kinetic energy in eastern australia." Journal of Climate and Applied Meteorology, Vol. 25, No. 11, pp. 1965-1971. 

  41. Salles, C., Poesen, J., and Sempere-Torres, D. (2002). "Kinetic energy of rain and its functional with intensity." Journal of Hydrology, Vol. 257, No. 1-4, pp. 256-270. 

  42. Schmidt, J. (1993). "Modeling long-term soil loss and landform change, in overland flow." Hydraulic and Erosion Mechanics, Edited by A. J. Parsons. 

  43. Sempere-Torres, D., Salles, C., Creutin, J. D., and Delrieu, G. (1992). "Quantification of soil detachment by raindrop impact: performance of classical formulae of kinetic energy in Mediterranean storms." Erosion and sediment transport monitoring programs in river basin, IASH, Publ. No. 210, pp. 115-124. 

  44. Shakesby, R. A, and Doerr, S. H. (2006). "Wildfire as a hydrological and geomorphological agent." Earth-Science Reviews Vol. 74, No. 3-4, pp. 269-307. 

  45. Shin, S. S., Park, S. D., Cho, J. W., and Lee, K. S. (2008). "Effects of vegetaton recovery for surface runoff and soil erosion in burned mountains, Yangyang." Journal of Civil Engineering KSCE, Vol. 499, pp. 154-166. 

  46. Shin, S. S., Park, S. D., and Lee, K. S. (2013). "Sediment and hydrological response to vegetation recovery following wildfire on hillslopes and the hollow of a small watershed." Journal of Hydrology, Vol. 499, pp. 154-166. 

  47. Shin, S. S., Park, S. D., and Choi, B. K. (2016). "Universal power law for relationship between rainfall kinetic energy and rainfall intensity." Advances in Meteorology, Vol. 2016, pp. 1-11. doi: 10.1155/2016/2494681. 

  48. Shin, S. S., Park, S. D., Hwang, Y. (2017). "Evaluation of effective energy for splash and sheet erosion on post-fire steep hillslopes." Proceedings 19th EGU General Assembly, Vienna, Austria, p. 11962 

  49. Shin, S. S., Park, S. D., Pierson, F. B., Al-Hamdan, O. Z, and Williams, C. J. (2012). Rainfall and sheet power equation for interrill erosion on steep hillslope. AGU Fall Meeting ID: 1491578. 

  50. Smith, J. A., and De Veaux, R. D. (1992). "The temporal and spatial variability of rainfall power." Environmetrics, Vol. 3, No. 1, pp. 29-53. 

  51. Steiner, M., and Smith, J. A. (2000). "Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra." Journal of Applied Meteorology, Vol. 39, No. 11, pp. 1923-1940. 

  52. Torri, D., and Poesen, J. (1992). "The effect of soil surface slope on raindrop detachment." CATENA, Vol. 19, No. 6, pp. 561-577. 

  53. Torri, D., Sfalanga M., and Del Sette, M. (1987). "Splash detachment: runoff depth and soil cohesion." CATENA, Vol. 14, No. 1-3, pp. 149-155. 

  54. Uijlenhoet, R., and Stricker, J. N. M. (1999). "A consistent rainfall parameterization based on the exponential raindrop size distribution." Journal of Hydrology, Vol. 218, No. 3-4, pp. 101-127. 

  55. Van Dijk, A. I. J. M, Bruijnzeel, L. A., and Rosewell, C. J. (2002) "Rainfall intensity-kinetic energy relationships: a critical literature review," Journal of Hydrology, Vol. 261, No. 1-4, pp. 1-23. 

  56. Wei, H., Nearing, M. A., Stone, J. J., Guertin, D. P., Spaeth, K. E., Pierson, F. B., Nichols, M. H., and Moffett, C. A. (2009) "A new splash and sheet erosion equation for rangelands." Soil and Water Management and Conservation, Vol. 73, No. 4, pp. 1386-1392. 

  57. Wischmeier, W. H., and Smith, D. D. (1958). "Rainfall energy and its relationship to soil loss." Transactions of the American Geophysical Union. Vol. 39, No. 2, pp. 285-291. 

  58. Wischmeier, W. H., and Smith, D. D. (1978). "Predicting rainfall erosion losses-a guide to conservation planning." Agriculture Handbook 537. US Department of Agriculture-Science and Education Administration, Washington DC. 

  59. Wright, A. C. (1986). "A physically-based model of the dispersion of splash droplets ejected from a water drop impact." Earth Surface Processes and Landforms, Vol. 11, No. 4, pp. 351-367. 

  60. Yang C. T. (1972) "Unit stream power and sediment transport." Journal of the Hydraulics Division, ASCE, Vol. 98, No. 10, pp. 1805-1826. 

  61. Zanchi, C., and Torri, D. (1980). "Evaluation of rainfall energy in central Italy." Edited by De Boodt, M., Gabriels, D. Assessment of Erosion, Wiley, Toronto, pp. 133-142. 

  62. Zhang, X. C., Nearing, M. A., Miller, W. P., Norton, L. D., and West, L. T. (1998). "Modeling interrill sediment delivery." Soil Science Society of America Journal, Vol. 62, No. 2, pp. 438-444. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로