$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Isolation and Characterization of a Lytic and Highly Specific Phage against Yersinia enterocolitica as a Novel Biocontrol Agent 원문보기

Journal of microbiology and biotechnology, v.28 no.11, 2018년, pp.1946 - 1954  

Gwak, Kyoung Min (School of Food Science and Biotechnology, Kyungpook National University) ,  Choi, In Young (School of Food Science and Biotechnology, Kyungpook National University) ,  Lee, Jinyoung (Department of Plant and Food Sciences, Sangmyung University) ,  Oh, Jun-Hyun (Department of Plant and Food Sciences, Sangmyung University) ,  Park, Mi-Kyung (School of Food Science and Biotechnology, Kyungpook National University)

Abstract AI-Helper 아이콘AI-Helper

The aim of this study was to isolate and characterize a lytic Yersinia enterocolitica-specific phage (KFS-YE) as a biocontrol agent. KFS-YE was isolated and purified with the final concentration of ($11.72{\pm}0.03$) log PFU/ml from poultry. As observed by transmission electron microscopy...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • After incubation for 16 h at 37°C, the formation of plaque and its size were measured for further procedures.
  • The specificity of KFS-YE was investigated by employing each overnight culture of bacteria (8 log CFU/ml), and a dot assay was performed following the procedures described for the methods of isolation, propagation, and purification of phages.
  • To determine the temperature effect, 100 μl of KFS-YE (9 log PFU/ml) was mixed with 900 μl of SM buffer (pH 7) and incubated at various temperatures (4°C, 22°C, 37°C, 50°C, 60°C, 70°C, and 80°C) for 1 h. Finally, the plaque assay was performed for comparisons following the procedures described for the methods of isolation, propagation, and purification of phages. In addition, KFS-YE (9 log PFU/ml) in TA broth was stored at various temperatures (-80°C, -20°C, 4°C, and 22°C) to determine its stability during the storage period.
  • To minimize damage from freezing, 20% glycerol was added to KFS-YE stored in TA broth at -80°C and -20°C. At 2-week intervals, the plaque assay was performed to measure the lytic activity of KFS-YE over the storage periods.
  • The experiments were replicated three times and the experimental results are expressed as means ± standard deviations (SD).
  • To elucidate the ability of KFS-YE to lyse Y. enterocolitica, the latent period and burst size were determined using a one-step growth curve analysis (Fig. 3). Because the definition of latent period is the time interval between the adsorption and the beginning of the first burst [27], it was determined to be 45 min.
  • Based on the one-step growth curve, the multiplication parameters of KFS-YE, such as the latent period and burst size, were analyzed (Fig. 3). The length of the latent period depends on the type of phage, phage species, physiological conditions, type of host, and the composition of the medium and incubation temperature [33].

대상 데이터

  • All bacterial strains with ATCC number and without ATCC number were provided from the American Type of Culture Collection and the laboratory in the Department of Plant and Food Sciences at Sangmyung University in Korea, respectively, except for Yersinia tuberculosis and Yersinia frederiksenii.

데이터처리

  • Student’s paired t-test for two groups and a one-way analysis of variance (ANOVA) for more than two groups were used to compare the means using the GraphPad and InStatV.3 programs (GraphPad, USA).
본문요약 정보가 도움이 되었나요?

참고문헌 (41)

  1. Pajunen M, Kiljunen S, Skurnik M. 2000. Bacteriophage ${\phi}$ YeO3-12, specific for Yersinia enterocolitica serotype O: 3, is related to coliphages T3 and T7. J. Bacteriol 182: 5114-5120. 

  2. Salem M, Virtanen S, Korkeala H, Skurnik M. 2015. Isolation and characterization of Yersinia-specific bacteriophages from pig stools in Finland. J. Appl. Microbiol. 118: 599-608. 

  3. Rahman A, Bonny TS, Stonsaovapak S, Ananchaipattana C. 2011. Yersinia enterocolitica: Epidemiological studies and outbreaks. J. Pathog. 2011: 239391. 

  4. Harris L, Farber J, Beuchat L, Parish M, Suslow T, Garrett E, et al. 2003. Outbreaks associated with fresh produce: incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2: 78-141. 

  5. MacDonald E, Einoder-Moreno M, Borgen K, Brandal LT, Diab L, Fossli, et al. 2016. National outbreak of Yersinia enterocolitica infections in military and civilian populations associated with consumption of mixed salad, Norway, 2014. Euro Surveill. 21. doi: 10.2807/1560-7917. 

  6. EFSA, 2012. The european union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010. Euro Surveill 17: 2597. 

  7. Bottone EJ. 1997. Yersinia enterocolitica: the charisma continues. Clin. Microbiol. Rev. 10: 257-276. 

  8. Rashid MH, Revazishvili T, Dean T, Butani A, Verratti K, Bishop-Lilly KA, et al. 2012. A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium. Bacteriophage 2: 168-177. 

  9. Hwang S, Yun J, Kim KP, Heu S, Lee S, Ryu S. 2009. Isolation and characterization of bacteriophages specific for Campylobacter jejuni. Microbiol Immunol. 53: 559-566. 

  10. Park M-K, Oh J-H, Chin BA. 2011. The effect of incubation temperature on the binding of Salmonella typhimurium to phage-based magnetoelastic biosensors. Sens. Actuators B: Chem. 160: 1427-1433. 

  11. Byeon HM, Vodyanoy VJ, Oh J-H, Kwon J-H, Park M-K. 2015. Lytic phage-based magnetoelastic biosensors for onsite detection of methicillin-resistant Staphylococcus aureus on spinach leaves. J. Electrochem. Soc. 162: B230-B235. 

  12. Hudson J, Billington C, Carey-Smith G, Greening G. 2005. Bacteriophages as biocontrol agents in food. J. Food Prot. 68: 426-437. 

  13. Owens J, Barton MD, Heuzenroeder MW. 2013. The isolation and characterization of Campylobacter jejuni bacteriophages from free range and indoor poultry. Vet. Microbiol. 162: 144-150. 

  14. Choi IY, Lee J-H, Kim H-J, Park M-K. 2017. Isolation and characterization of a novel broad-host-range bacteriophage infecting Salmonella enterica subsp. enterica for biocontrol and rapid detection. J. Microbiol. Biotechnol. 27: 2151-2155. 

  15. Sharma M. 2013. Lytic bacteriophages. Bacteriophage 3: e25518. 

  16. Cox N, Berrang M, Cason J. 2000. Salmonella penetration of egg shells and proliferation in broiler hatching eggs--a review. Poult. Sci. 79: 1571-1574. 

  17. Oh J-H, Park M-K. 2017. Recent trends in Salmonella outbreaks and emerging technology for biocontrol of Salmonella using phages in foods: a review. J. Microbiol. Biotechnol. 27: 2075-2088. 

  18. Stevenson R, Airdrie D. 1984. Isolation of Yersinia ruckeri bacteriophages. Appl. Environ. Microbiol. 47: 1201-1205. 

  19. Popp A, Hertwig S, Lurz R, Appel B. 2000. Comparative study of temperate bacteriophages isolated from Yersinia. Syst. Appl. Microbiol. 23: 469-478. 

  20. Pujato SA, Guglielmotti DM, Ackermann H-W, Patrignani F, Lanciotti R, Reinheimer JA, et al. 2014. Leuconostoc bacteriophages from blue cheese manufacture: long-term survival, resistance to thermal treatments, high pressure homogenization and chemical biocides of industrial application. Int. J. Food Microbiol. 177: 81-88. 

  21. Park M-K, Wikle III HC, Chai Y, Horikawa S, Shen W, Chin BA. 2012. The effect of incubation time for Salmonella Typhimurium binding to phage-based magnetoelastic biosensors. Food Control. 26: 539-545. 

  22. Verma V, Harjai K, Chhibber S. 2009. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agent. Curr. Microbiol. 59: 274-281. 

  23. Ackermann H-W, DuBow M, Jarvis A, Jones L, Krylov V, Maniloff J, et al. 1992. The species concept and its application to tailed phages. Arch. Virol. 124: 69-82. 

  24. Bradley DE. 1967. Ultrastructure of bacteriophage and bacteriocins. Bacteriol. Rev. 31: 230-314. 

  25. Puapermpoonsiri U, Ford S, Van der Walle C. 2010. Stabilization of bacteriophage during freeze drying. Int. J. Pharm. 389: 168-175. 

  26. Golec P, Dabrowski K, Hejnowicz MS, Gozdek A, Los JM, W?grzyn G, et al. 2011. A reliable method for storage of tailed phages. J. Microbiol. Methods 84: 486-489. 

  27. Li L, Zhang Z. 2014. Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Mol. Biol. Rep. 41: 5829-5838. 

  28. Haq IU, Chaudhry WN, Andleeb S, Qadri I. 2012. Isolation and partial characterization of a virulent bacteriophage IHQ1 specific for Aeromonas punctata from stream water. Microb. Ecol. 63: 954-963. 

  29. Park M, Lee J-H, Shin H, Kim M, Choi J, Kang D-H, et al. 2012. Characterization and comparative genomic analysis of a novel bacteriophage SFP10 simultaneously inhibiting both Salmonella and Escherichia coli O157: H7. Appl. Environ. Microbiol. 78: 58-69. 

  30. Yang H, Liang L, Lin S, Jia S. 2010. Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol. 10: 131. 

  31. Ackermann H-W, Tremblay D, Moineau S. 2004. Long-term bacteriophage preservation. WFCC Newslett. 38: 35-40. 

  32. Capra M, Quiberoni AdL, Ackermann H-W, Moineau S, Reinheimer J. 2006. Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei. J. Dairy Sci. 89: 2414-2423. 

  33. Weinbauer MG. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28: 127-181. 

  34. Jun JW, Kim HJ, Yun SK, Chai JY, Lee BC, Park SC. 2016. Isolation and comparative genomic analysis of T1-like Shigella bacteriophage pSf-2. Curr. Microbiol. 72: 235-241. 

  35. Shen G-H, Wang J-L, Wen F-S, Chang K-M, Kuo C-F, Lin C-H, et al. 2012. Isolation and characterization of ${\phi}$ km18p, a novel lytic phage with therapeutic potential against extensively drug resistant Acinetobacter baumannii. PLoS One 7: e46537. 

  36. Kim M, Ryu S. 2011. Characterization of a T5-like coliphage SPC35 and differential development of resistance to SPC35 in Salmonella Typhimurium and Escherichia coli. Appl. Environ. Microbiol. 77: 2041-2050. 

  37. Yamaki S, Omachi T, Kawai Y, Yamazaki K. 2014. Characterization of a novel Morganella morganii bacteriophage FSP1 isolated from river water. FEMS Microbiol. Lett. 359:166-172. 

  38. Gnanasekaran G, Na EJ, Chung HY, Kim S, Kim Y-T, Kwak W, et al. 2017. Genomic isights and its comparative analysis with Yersinia enterocolitica reveals the potential virulence determinants and further pathogenicity for foodborne outbreaks. J. Microbiol. Biotechnol. 27: 262-270. 

  39. Kasatiya S, Ackermann H-W. 1986. Morphology of Yersinia enterocolitica phages. Ann. Inst. Pasteur. Virol. 137: 59-69. 

  40. Schwudke D, Ergin A, Michael K, Volkmar S, Appel B, Knabner D, et al. 2008. Broad-host-range Yersinia phage PY100: genome sequence, proteome analysis of virions, and DNA packaging strategy. J. Bacteriol. 190: 332-342. 

  41. Leon-Velarde CG, Kropinski AM, Chen S, Abbasifar A, Griffiths MW, Odumeru JA. 2014. Complete genome sequence of bacteriophage vB_YenP_AP5 which infects Yersinia enterocolitica of serotype O: 3. Virol. J. 11: 188. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로