최근 서비스로서의 머신러닝(MLaaS) 개념은 데이터 자체를 제외하고 네트워크 서버, 스토리지 또는 데이터 과학자 없이도 생산적인 서비스 모델을 구축할 수 있다는 점에서 기계학습을 다루는 대부분의 산업 분야와 연구 그룹들의 많은 관심을 받고 있다. 그러나 과학 분야에서는 양질의 빅데이터를 확보하는 가정 자체가 커다란 도전이 된다. 즉, 연구자 간 연구 결과물의 공유가 쉽지 않을 뿐 아니라 과학기술 데이터의 비정형성 문제를 해결해야하는 문제가 선행된다. 본 논문에서 제안된 KISTI-ML 플랫폼은 과학기술 데이터를 위한 AI 모델 고속 개발 도구로서, 머신러닝에 익숙하지 않은 연구자들을 위해 웹 기반 GUI인터페이스를 제공하고 연구자는 자신의 데이터를 이용하여 머신러닝 코드를 손쉽게 생성하고 구동할 수 있다. 또한 승인된 커뮤니티 멤버들을 중심으로 데이터셋 및 특징 추출에 사용되는 데이터전처리, 학습 네트워크 설계 등이 포함되는 프로그래밍 코드를 공유할 수 있는 환경을 제공한다.
최근 서비스로서의 머신러닝(MLaaS) 개념은 데이터 자체를 제외하고 네트워크 서버, 스토리지 또는 데이터 과학자 없이도 생산적인 서비스 모델을 구축할 수 있다는 점에서 기계학습을 다루는 대부분의 산업 분야와 연구 그룹들의 많은 관심을 받고 있다. 그러나 과학 분야에서는 양질의 빅데이터를 확보하는 가정 자체가 커다란 도전이 된다. 즉, 연구자 간 연구 결과물의 공유가 쉽지 않을 뿐 아니라 과학기술 데이터의 비정형성 문제를 해결해야하는 문제가 선행된다. 본 논문에서 제안된 KISTI-ML 플랫폼은 과학기술 데이터를 위한 AI 모델 고속 개발 도구로서, 머신러닝에 익숙하지 않은 연구자들을 위해 웹 기반 GUI 인터페이스를 제공하고 연구자는 자신의 데이터를 이용하여 머신러닝 코드를 손쉽게 생성하고 구동할 수 있다. 또한 승인된 커뮤니티 멤버들을 중심으로 데이터셋 및 특징 추출에 사용되는 데이터전처리, 학습 네트워크 설계 등이 포함되는 프로그래밍 코드를 공유할 수 있는 환경을 제공한다.
Machine learning as a service, the so-called MLaaS, has recently attracted much attention in almost all industries and research groups. The main reason for this is that you do not need network servers, storage, or even data scientists, except for the data itself, to build a productive service model....
Machine learning as a service, the so-called MLaaS, has recently attracted much attention in almost all industries and research groups. The main reason for this is that you do not need network servers, storage, or even data scientists, except for the data itself, to build a productive service model. However, machine learning is often very difficult for most developers, especially in traditional science due to the lack of well-structured big data for scientific data. For experiment or application researchers, the results of an experiment are rarely shared with other researchers, so creating big data in specific research areas is also a big challenge. In this paper, we introduce the KISTI-ML platform, a community-based rapid AI model development for scientific data. It is a place where machine learning beginners use their own data to automatically generate code by providing a user-friendly online development environment. Users can share datasets and their Jupyter interactive notebooks among authorized community members, including know-how such as data preprocessing to extract features, hidden network design, and other engineering techniques.
Machine learning as a service, the so-called MLaaS, has recently attracted much attention in almost all industries and research groups. The main reason for this is that you do not need network servers, storage, or even data scientists, except for the data itself, to build a productive service model. However, machine learning is often very difficult for most developers, especially in traditional science due to the lack of well-structured big data for scientific data. For experiment or application researchers, the results of an experiment are rarely shared with other researchers, so creating big data in specific research areas is also a big challenge. In this paper, we introduce the KISTI-ML platform, a community-based rapid AI model development for scientific data. It is a place where machine learning beginners use their own data to automatically generate code by providing a user-friendly online development environment. Users can share datasets and their Jupyter interactive notebooks among authorized community members, including know-how such as data preprocessing to extract features, hidden network design, and other engineering techniques.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.