$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Characteristics and Lytic Activity of Phage-Derived Peptidoglycan Hydrolase, LysSAP8, as a Potent Alternative Biocontrol Agent for Staphylococcus aureus 원문보기

Journal of microbiology and biotechnology, v.29 no.12, 2019년, pp.1916 - 1924  

Yu, Jun-Hyeok (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University) ,  Lim, Jeong-A (Research Group of Consumer Safety, Korea Food Research Institute) ,  Chang, Hyun-Joo (Research Group of Consumer Safety, Korea Food Research Institute) ,  Park, Jong-Hyun (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University)

Abstract AI-Helper 아이콘AI-Helper

Outbreaks of staphylococcal food poisoning (SFP) causing serious human diseases and economic losses have been reported globally. Furthermore, the spread of Staphylococcus aureus with increased resistance to multiple antimicrobial agents has become a major concern in the food industries and medicine....

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Based on the putative endolysin gene of SAP8, the primers SAP8_F #5 (5’-GGAATTCCATATGTTAAT GACAAAA-AATCAA-3’) and SAP8_R #4 (5’-CCGCTCGAGAAT CGTGCTAAA-3’) were designed.
  • In the experiment conducted to assess the effects of different concentrations of NaCl on the endolysin, lytic activity of LysSAP8 varied significantly with change in NaCl concentrations (Fig. 6C). In the absence of NaCl, the efficacy of LysSAP8 for lysis was approximately 50% of that in buffer supplemented with 500 mM NaCl, which was considered the optimum NaCl concentration.
  • The predicted ORFs were annotated using Blastp based on the e-value < 1E-05, and classified into six groups based on their functions: packaging, structure, host lysis, DNA manipulation, DNA regulation, and additional function. The G+C content was predicted using the DNA/RNA GC content calculator from ENDMEMO (http://www.endme mo.com/bio/gc.php), and the tRNAscan-SE 1.21 (The Lowe Lab, University of California Santa Cruz, USA) was used to search for the tRNA [27, 28].
  • The predicted ORFs were annotated using Blastp based on the e-value < 1E-05, and classified into six groups based on their functions: packaging, structure, host lysis, DNA manipulation, DNA regulation, and additional function.
  • To test the susceptibility of LysSAP8 at various factors, the endolysin was inoculated into the cell preparation (final conc. 1 μM), which was then incubated for 30 min with the following conditions: temperature (4°C, 15°C, 25°C, 30°C, 37°C, and 43°C), pH (50 mM citrate buffer pH 3–5, 50 mM imidazole-HCl buffer pH 6, and 50 mM tris-HCl buffer pH 7-9), NaCl (0, 500, 750, and 1,000 mM), and divalent metal ions (1 mM: Ca2+, Co2+, Cu2+, Mg2+, Mn2+, Hg2+, and Zn2+, and EDTA for control).

데이터처리

  • Statistically significant differences were evaluated using an unpaired one-tailed t-test for three independent experiments. pvalues less than 0.

이론/모형

  • The phage lysate was purified using a modified polyethylene glycol precipitation method [26]. Purified phage solution was deposited onto formvar-carbon 200 mesh TH copper grids (Ted Pella, Inc.
  • aureus, were aligned using ClustalW [30]. These endolysin alignments were constructed into a phylogenetic tree by the neighbor-joining method with 1000 bootstrap replicates using MEGA 7 (MEGA) [31]. The NCBI database was accessed to identify all endolysin sequences.
본문요약 정보가 도움이 되었나요?

참고문헌 (42)

  1. Knox J, Uhlemann AC, Lowy FD. 2015. Staphylococcus aureus infections: transmission within households and the community. Trends Microbiol. 23: 437-444. 

  2. Argudin MA, Mendoza MC, Rodicio MR. 2010. Food poisoning and Staphylococcus aureus enterotoxins. Toxins (Basel). 2: 1751-1773. 

  3. Choi SW, Lee JC, Kim J, Kim JE, Baek MJ, Park SY, et al. 2019. Prevalence and risk factors for positive nasal methicillin-resistant Staphylococcus aureus carriage among orthopedic patients in Korea. J. Clin. Med. 8(5): pii: E631. 

  4. Hennekinne J-A. 2018. Staphylococcus aureus as a Leading Cause of Foodborne Outbreaks Worldwide, pp. 129-146. In Fetsch A (ed.), Staphylococcus aureus, 1st Ed. Academic Press, Cambridge. 

  5. Hyeon JY. 2013. A foodborne outbreak of Staphylococcus aureus associated with fried chicken in Republic of Korea. J. Microbiol. Biotechnol. 23: 85-87. 

  6. Papadopoulos P, Papadopoulos T, Angelidis AS, Boukouvala E, Zdragas A, Papa A, et al. 2018. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece. Food Microbiol. 69: 43-50. 

  7. Lin DM, Koskella B, Lin HC. 2017. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest Pharmacol. Ther. 8: 162-173. 

  8. Salmond GP, Fineran PC. 2015. A century of the phage: past, present and future. Nat. Rev. Microbiol. 13: 777-786. 

  9. Jamal M, Bukhari S, Andleeb S, Ali M, Raza S, Nawaz MA, et al. 2019. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J. Basic Microbiol. 59: 123-133. 

  10. Wittebole X, De Roock S, Opal SM. 2014. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5: 226-235. 

  11. Schmelcher M, Donovan DM, Loessner MJ. 2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 7: 1147-1171. 

  12. Schmelcher M, Loessner MJ. 2016. Bacteriophage endolysins: applications for food safety. Curr. Opin. Biotechnol. 37: 76-87. 

  13. Trudil D. 2015. Phage lytic enzymes: a history. Virol. Sin. 30: 26-32. 

  14. Chang Y, Yoon H, Kang DH, Chang PS, Ryu S. 2017. Endolysin LysSA97 is synergistic with carvacrol in controlling Staphylococcus aureus in foods. Int. J. Food Microbiol. 244: 19-26. 

  15. Jasim HN, Hafidh RR, Abdulamir AS. 2018. Formation of therapeutic phage cocktail and endolysin to highly multidrug resistant Acinetobacter baumannii: in vitro and in vivo study. Iran J. Basic Med. Sci. 21: 1100-1108. 

  16. Zhang L, Li D, Li X, Hu L, Cheng M, Xia F, et al. 2016. LysGH15 kills Staphylococcus aureus without being affected by the humoral immune response or inducing inflammation. Sci. Rep. 6: 29344. 

  17. Gerstmans H, Rodriguez-Rubio L, Lavigne R, Briers Y. 2016. From endolysins to Artilysin(R)s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochem. Soc. Trans. 44: 123-128. 

  18. Abaev I, Foster-Frey J, Korobova O, Shishkova N, Kiseleva N, Kopylov P, et al. 2013. Staphylococcal phage 2638A endolysin is lytic for Staphylococcus aureus and harbors an inter-lyticdomain secondary translational start site. Appl. Microbiol. Biotechnol. 97: 3449-3456. 

  19. Fujiki J, Nakamura T, Furusawa T, Ohno H, Takahashi H, Kitana J, et al. 2018. Characterization of the lytic capability of a lysk-like endolysin, lys-phiSA012, derived from a polyvalent Staphylococcus aureus bacteriophage. Pharmaceuticals (Basel). 11(1). pii: E25. 

  20. Gu J, Xu W, Lei L, Huang J, Feng X, Sun C, et al. 2011. LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection. J. Clin. Microbiol. 49: 111-117. 

  21. Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. 2018. Recombinant endolysins as potential therapeutics against antibiotic-resistant: current status of research and novel delivery strategies. Clin. Microbiol. Rev. 31: e00071-00017. 

  22. Sanz-Gaitero M, Keary R, Garcia-Doval C, Coffey A, van Raaij MJ. 2014. Crystal structure of the lytic CHAP(K) domain of the endolysin LysK from Staphylococcus aureus bacteriophage K. Virol J. 11: 133-133. 

  23. Melo LDR, Brandao A, Akturk E, Santos SB, Azeredo J. 2018. Characterization of a new Staphylococcus aureus kayvirus harboring a lysin active against biofilms. Viruses 10(4). pii: E182. 

  24. Kim NH, Park WB, Cho JE, Choi YJ, Choi SJ, Jun SY, et al. 2018. Effects of phage endolysin SAL200 combined with antibiotics on Staphylococcus aureus infection. Antimicrob. Agents Chemother. 62. pii: e00731-18. 

  25. Lu L, Cai L, Jiao N, Zhang R. 2017. Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter. Virol J. 14(1): 104. 

  26. Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R. 2015. bio-control of Salmonella Enteritidis in foods using bacteriophages. Viruses 7: 4836-4853. 

  27. Khan Shawan MM, Hasan MA, Hossain MM, Hasan MM, Parvin A, Akter S, et al. 2016. Genomics dataset on unclassified published organism (patent US 7547531). Data Brief. 9: 602-605. 

  28. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer rna genes in genomic sequence. Nucleic Acids Res. 25: 955-964. 

  29. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. 

  30. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. 2007. Clustal W and clustal X version 2.0. Bioinformatics 23: 2947-2948. 

  31. Kumar S, Nei M, Dudley J, Tamura K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9: 299-306. 

  32. Cabrita LD, Bottomley SP. 2004. Protein expression and refolding - a practical guide to getting the most out of inclusion bodies, pp. 31-50. In El-Gewely MR (ed.), Biotechnology Annual Review Volume 10., 10th Ed. Elsevier, Amsterdam. 

  33. Schmelcher M, Shen Y, Nelson DC, Eugster MR, Eichenseher F, Hanke DC, et al. 2015. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J. Antimicrob. Chemother. 70: 1453-1465. 

  34. Won G, Hajam IA, Lee JH. 2017. Improved lysis efficiency and immunogenicity of Salmonella ghosts mediated by coexpression of lambda phage holin-endolysin and X174 gene E. Sci. Rep. 7: 45139. 

  35. Larpin Y, Oechslin F, Moreillon P, Resch G, Entenza JM, Mancini S. 2018. In vitro characterization of PlyE146, a novel phage lysin that targets Gram-negative bacteria. PLoS One 13: e0192507. 

  36. Dong H, Zhu C, Chen J, Ye X, Huang YP. 2015. Antibacterial activity of Stenotrophomonas maltophilia endolysin P28 against both gram-positive and gram-negative bacteria. Front Microbiol. 6: 1299. 

  37. Chang Y, Kim M, Ryu S. 2017. Characterization of a novel endolysin LysSA11 and its utility as a potent biocontrol agent against Staphylococcus aureus on food and utensils. Food Microbiol. 68: 112-120. 

  38. Filatova LY, Donovan DM, Foster-Frey J, Pugachev VG, Dmitrieva NF, Chubar TA, et al. 2015. Bacteriophage phi11 lysin: physicochemical characterization and comparison with phage phi80alpha lysin. Enzyme Microb. Technol. 73-74: 51-58. 

  39. Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG, Donovan DM. 2009. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol. Lett. 294: 52-60. 

  40. Gilmer DB, Schmitz JE, Euler CW, Fischetti VA. 2013. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillinresistant Staphylococcus aureus. Antimicrob. Agents Chemother. 57: 2743-2750. 

  41. Heselpoth RD, Yin Y, Moult J, Nelson DC. 2015. Increasing the stability of the bacteriophage endolysin PlyC using rationale-based FoldX computational modeling. Protein Eng. Des. Sel. 28: 85-92. 

  42. Gupta R, Prasad Y. 2011. P-27/HP endolysin as antibacterial agent for antibiotic resistant Staphylococcus aureus of human infections. Curr. Microbiol. 63: 39-45. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로