$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

의료관련감염에서 감시 개선을 위한 평가
Evaluation of the Effectiveness of Surveillance on Improving the Detection of Healthcare Associated Infections 원문보기

Korean journal of clinical laboratory science : KJCLS = 대한임상검사과학회지, v.51 no.1, 2019년, pp.15 - 25  

박창은 (남서울대학교 임상병리학과.분자진단연구소)

초록
AI-Helper 아이콘AI-Helper

감염감시를 위한 신뢰성 있고 객관적인 의료관련 감염의 정의 및 자동화 된 프로세스를 개발하는 것이 중요하다. 그러나 자동화 된 감시 시스템으로의 전환은 여전히 어려운 과제이다. 초기의 발생 확인은 대개 비정상적인 사건과 진행중인 질병 감시를 인식하는 임상 검사자들이 기준선 비율을 결정하도록 요구한다. 이 시스템은 잘 정의 된 감시 규칙에 따라 의료 관련 혈류 감염의 후보를 감시하기 위해 매일 검사정보 시스템 데이터를 검사한다. 시스템은 추가 확인을 요구함으로써 전문적인 자율성을 탐지하고 예약한다. 또한 웹 기반 혈류감염 감시 및 분류 시스템은 검사실 정보 시스템에서 얻은 개별 데이터 요소를 사용할 수 있고 검사정보 시스템은 기존의 감염 제어 인력 감시 시스템과 높은 상관관계가 있는 데이터를 제공한다. 이런 시스템은 예방 지침에 따를 경우 적절하고, 수용 가능하며, 유용하고 민감하다. 감시 시스템은 병원에서 광범위한 병원균의 전파가 언제 어디서 발생하는지에 대한 이해를 획기적으로 향상시키기 때문에 유용하다. 국가적 차원의 계획은 의료관련감염 예방, 보건 관련 예방 통제위원회(HAIPCC), 살균 서비스(SS), 미생물학 실험실, 손 위생 차원의 주요 구조를 강화하기 위해 추진되어야하며 해당 지역은 의료관련 감염 예방에 미치는 영향을 고려하여 선정해야 한다.

Abstract AI-Helper 아이콘AI-Helper

The development of reliable and objective definitions as well as automated processes for the detection of health care-associated infections (HAIs) is crucial; however, transformation to an automated surveillance system remains a challenge. Early outbreak identification usually requires clinicians wh...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 새로운 시대에는 모든 역학적 감시활동의 필요성이 제기되고 이에 향후 어려움에 직면에 앞서 효율적이고 정보의 질을 향상시키기 위한 감염감시의 평가를 수행하기 위한 다양한 정보의 축적이 요구되어 감시의 개선을 도입하여 평가하는 시스템을 제안하고자 수행하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
WOD (Worldwide Outbreak Database, www.outbreakdatabase.com)란? outbreakdatabase.com)는 병원감염의 가장 큰 유행 감시를 담당하는 데이타베이스이다. 현재 이 웹은 1972년부터 오늘까지 의학문헌에 발표된 것으로 체계적으로 제기된 3500건 이상의 발병 보고를 수행하고 있다[21, 22].
감염감시를 위한 국가적 차원의 계획은 어떻게 이루어져야 하는가? 감시 시스템은 병원에서 광범위한 병원균의 전파가 언제 어디서 발생하는지에 대한 이해를 획기적으로 향상시키기 때문에 유용하다. 국가적 차원의 계획은 의료관련감염 예방, 보건 관련 예방 통제위원회(HAIPCC), 살균 서비스(SS), 미생물학 실험실, 손 위생 차원의 주요 구조를 강화하기 위해 추진되어야하며 해당 지역은 의료관련 감염 예방에 미치는 영향을 고려하여 선정해야 한다.
분자 기반의 균주 감별을 위해 다양한 기법에는 어떤 것들이 있는가? Pulsed-field gel electrophoresis (PFGE) [4, 5], Staphylococcus aureus Protein A (spa) typing [6], Staphylococcal cassette chromosome mec (SCCmec) typing [7]과 최근에는 whole genome sequencing [8]을 포함한 분석 방법이 병원에서 감시 및 발병 조사를 위해 사용된다. 이중 PFGE는 MRSA의 발병 조사의 표준 방법으로도 사용되고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (54)

  1. Talbot TR, Bratzler DW, Carrico RM, Diekema DJ, Hayden MK, Huang SS, et al. Public reporting of health care-associated surveillance data: recommendations from the healthcare infection control practices advisory committee. Ann Intern Med. 2013;159:631-635. https://doi.org/10.7326/0003-4819-159-9-201311050-00011. 

  2. Singh A, Goering RV, Simjee S, Foley SL, Zervos MJ. Application of molecular techniques to the study of hospital infection. Clin Microbiol Rev. 2006;19:512-530. https://doi.org/10.1128/CMR.00025-05. 

  3. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, et al. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect. 2007;13:1-46. https://doi.org/10.1111/j.1469-0691.2007.01786.x. 

  4. Babouee B, Frei R, Schultheiss E, Widmer AF, Goldenberger D. Comparison of the DiversiLab repetitive element PCR system with spa typing and pulsed-field gel electrophoresis for clonal characterization of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2011;49:1549-1555. https://doi.org/10.1128/JCM.02254-10. 

  5. McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol. 2003;41:5113-5120. 

  6. Vainio A, Koskela S, Virolainen A, Vuopio J, Salmenlinna S. Adapting spa typing for national laboratory-based surveillance of methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis. 2011;30:789-797. https://doi.org/10.1007/s10096-011-1158-5. 

  7. Chen L, Mediavilla JR, Oliveira DC, Willey BM, de Lencastre H, Kreiswirth BN. Multiplex real-time PCR for rapid Staphylococcal cassette chromosome mec typing. J Clin Microbiol. 2009;47:3692-3706. https://doi.org/10.1128/JCM.00766-09. 

  8. Harris SR, Cartwright EJ, Torok ME, Holden MT, Brown NM, Ogilvy-Stuart AL, et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis. 2013;13:130-136. https://doi.org/10.1016/S1473-3099(12)70268-2. 

  9. Schonfeld V, Diercke M, Gilsdorf A, Eckmanns T, Walter J. Evaluation of the statutory surveillance system for invasive MRSA infections in Germany, 2016-2017. BMC Public Health. 2018;18:1063. https://doi.org/10.1186/s12889-018-5971-y. 

  10. Nigrovic LE, Malley R, Macias CG, Kanegaye JT, Moro-Sutherland DM, Schremmer RD, et al. Effect of antibiotic pretreatment on cerebrospinal fluid profiles of children with bacterial meningitis. Pediatrics. 2008;122:726-730. https://doi.org/10.1542/peds.2007-3275. 

  11. Resti M, Micheli A, Moriondo M, Becciolini L, Cortimiglia M, Canessa C, et al. Comparison of the effect of antibiotic treatment on the possibility of diagnosing invasive pneumococcal disease by culture or molecular methods: a prospective, observational study of children and adolescents with proven pneumococcal infection. Clin Ther. 2009;31:1266-1273. https://doi.org/10.1016/j.clinthera.2009.06.010. 

  12. Sacchi CT, Fukasawa LO, Goncalves MG, Salgado MM, Shutt KA, Carvalhanas TR, et al. Incorporation of real-time PCR into routine public health surveillance of culture negative bacterial meningitis in Sao Paulo, Brazil. PLoS One. 2011;6:e20675. https://doi.org/10.1371/journal.pone.0020675. 

  13. Magomani V, Wolter N, Tempia S, du Plessis M, de Gouveia L, von Gottberg A. Challenges of using molecular serotyping for surveillance of pneumococcal disease. J Clin Microbiol. 2014;52:3271-3276. httsp://doi.org/10.1128/JCM.01061-14. 

  14. Montella E, Di Cicco MV, Ferraro A, Centobelli P, Raiola E, Triassi M. The application of Lean Six Sigma methodology to reduce the risk of healthcare-associated infections in surgery departments. J Eval Clin Pract. 2017;23:530-539. https://doi.org/10.1111/jep.12662. 

  15. Pimenta FC, Roundtree A, Soysal A, Bakir M, du Plessis M, Wolter N, et al. Sequential triplex real-time PCR assay for detecting 21 pneumococcal capsular serotypes that account for a high global disease burden. J Clin Microbiol. 2013;51:647-652. https://doi.org/10.1128/JCM.02927-12. 

  16. Petrini C, Ricciardi W. General principles and practice of the ethics of public health surveillance: comments on the situation in Italy. Commentary. Ann Ist Super Sanita. 2018;54:9-11. https://doi.org/10.4415/ANN_18_01_04. 

  17. Okesina AB, Adelekan A. The role of laboratory medicine in addressing migrant health problems. EJIFCC. 2018;29:309-312. 

  18. Coronado F, Chen GM, Smith CK, Glynn MK. Communicating science: The role of Centers for Disease Control and prevention's field-based epidemic intelligence service officers, 2009-2014. J Public Health Manag Pract. 2016;22:403-408. https://doi.org/10.1097/PHH.0000000000000326. 

  19. Afshinnekoo E, Chou C, Alexander N, Ahsanuddin S, Schuetz AN, Mason CE. Precision metagenomics: rapid metagenomic analyses for infectious disease diagnostics and public health surveillance. J Biomol Tech. 2017;28:40-45. https://doi.org/10.7171/jbt.17-2801-007. 

  20. Choi J, Cho Y, Shim E, Woo H. Web-based infectious disease surveillance systems and public health perspectives: a systematic review. BMC Public Health. 2016;16:1238. https://doi.org/10.1186/s12889-016-3893-0. 

  21. Gastmeier P, Stamm-Balderjahn S, Hansen S, Nitzschke-Tiemann F, Zuschneid I, Groneberg K, et al. How outbreaks can contribute to prevention of nosocomial infection: analysis of 1,022 outbreaks. Infect Control Hosp Epidemiol. 2005;26:357-361. https://doi.org/10.1086/502552. 

  22. Vonberg RP, Weitzel-Kage D, Behnke M, Gastmeier P. Worldwide outbreak database: the largest collection of nosocomial outbreaks. Infection. 2011;39:29-34. https://doi.org/10.1007/s15010-010-0064-6. 

  23. Stultz JS, Nahata MC. Computerized clinical decision support for medication prescribing and utilization in pediatrics. J Am Med Inform Assoc. 2012 ;19:942-953. https://doi.org/10.1136/amiajnl-2011-000798. 

  24. Blanco N, O'Hara LM, Robinson GL, Brown J, Heil E, Brown CH. Health care worker perceptions toward computerized clinical decision support tools for Clostridium difficile infection reduction: a qualitative study at 2 hospitals. Am J Infect Control. 2018;46:1160-1166. https://doi.org/10.1016/j.ajic.2018.04.204. 

  25. Park R, O'Brien TF, Huang SS, Baker MA, Yokoe DS, Kulldorff M, et al. Statistical detection of geographic clusters of resistant Escherichia coli in a regional network with WHONET and SaTScan. Expert Rev Anti Infect Ther. 2016;14:1097-1107. https://doi.org/10.1080/14787210.2016.1220303. 

  26. Agarwal A, Kapila K, Kumar S. WHONET Software for the surveillance of antimicrobial susceptibility. Med J Armed Forces India. 2009;65:264-266. https://doi.org/10.1016/S0377-1237(09)80020-8. 

  27. Stachel A, Pinto G, Stelling J, Fulmer Y, Shopsin B, Inglima K, et al. Implementation and evaluation of an automated surveillance system to detect hospital outbreak. Am J Infect Control. 2017;45:1372-1377. https://doi.org/10.1016/j.ajic.2017.06.031. 

  28. Rea K, Le-Jenkins U, Rutledge C. A technology intervention for nurses engaged in preventing catheter-associated urinary tract infections. Comput Inform Nurs. 2018;36:305-313. https://doi.org/10.1097/CIN.0000000000000429. 

  29. Yokoe DS, Anderson DJ, Berenholtz SM, Calfee DP, Dubberke ER, Ellingson K, et al. Introduction to "A compendium of strategies to prevent healthcare-associated infections in acute care hospitals: 2014 updates". Infect Control Hosp Epidemiol. 2014;35:S1-5. https://doi.org/10.1086/678903. 

  30. Goto M, Oh ME, Schweizer ML, Perencevich EN. Accuracy of administrative code data for the surveillance of healthcare-associated infections: a systematic review and meta-analy sis. Clin Infect Dis. 2014;58:688-696. https://doi.org/10.1093/cid/cit737. 

  31. Du M, Xing Y, Suo J, Liu B, Jia N, Huo R, et al. Real-time automatic hospital-wide surveillance of nosocomial infections and outbreaks in a large Chinese tertiary hospital. BMC Med Inform Decis Mak. 2014;14:9. https://doi.org/10.1186/1472-6947-14-9. 

  32. Woeltje KF, McMullen KM, Butler AM, Goris AJ, Doherty JA. Electronic surveillance for healthcare-associated central line-associated bloodstream infections outside the intensive care unit. Infect Control Hosp Epidemiol. 2011;32:1086-1090. https://doi.org/10.1086/662181. 

  33. Choudhuri JA, Pergamit RF, Chan JD, Schreuder AB, McNamara E, Lynch JB, et al. An electronic catheter-associated urinary tract infection surveillance tool. Infect Control Hosp Epidemiol. 2011;32:757-762. https://doi.org/10.1086/661103. 

  34. Assis DB, Madalosso G, Padoveze MC, Lobo RD, Oliveira MS, Boszczowski I, et al. Implementation of tailored interventions in a statewide programme to reduce central line-associated bloodstream infections. J Hosp Infect. 2018;100:e163-e168. https://doi.org/10.1016/j.jhin.2018.04.020. 

  35. Dean CL, Wade J, Roback JD. Transfusion-transmitted infections: an update on product screening, diagnostic techniques, and the path ahead. J Clin Microbiol. 2018;56:pii:e00352-18. https://doi.org/10.1128/JCM.00352-18. 

  36. Tseng YJ, Wu JH, Lin HC, Chen MY, Ping XO, Sun CC, et al. A web-based, hospital-wide health care-associated bloodstream infection surveillance and classification system: development and evaluation. JMIR Med Inform. 2015;3:e31. https://doi.org/10.2196/medinform.4171. 

  37. Umscheid CA, Mitchell MD, Doshi JA, Agarwal R, Williams K, Brennan PJ. Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costs. Infect Control Hosp Epidemiol. 2011;32:101-114. https://doi.org/10.1086/657912. 

  38. Gardner A, Mitchell B, Beckingham W, Fasugba O. A point prevalence cross-sectional study of healthcare-associated urinary tract infections in six Australian hospitals. BMJ Open. 2014;4:e005099. https://doi.org/10.1136/bmjopen-2014-005099. 

  39. Saint S. Clinical and economic consequences of nosocomial catheter-related bacteriuria. Am J Infect Control 2000;28:68-75. https://doi.org/10.1016/S0196-6553(00)90015-4. 

  40. Fasugba O, Cheng AC, Russo PL, Northcote M, Rosebrock H, Mitchell BG. Reducing urinary catheter use: a protocol for a mixed methods evaluation of an electronic reminder system in hospitalised patients in Australia. BMJ Open. 2018;8:e020469. https://doi.org/10.1136/bmjopen-2017-020469. 

  41. Jason P. Burnham, John P. Kirby, Marin H. Kollef. Diagnosis and management of skin and soft tissue infections in the intensive care unit: a review. Intensive Care Med. 2016;42:1899-1911. https://doi.org/10.1007/s00134-016-4576-0. 

  42. Stevens DL, Bisno AL, Chambers HF, Everett ED, Dellinger P, Goldstein EJ, et al. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2005;41:1373-406. https://doi.org/10.1086/497143. 

  43. Li X, Chen Y, Gao W, Ouyang W, Wei J, Wen Z. Epidemiology and outcomes of complicated skin and soft tissue infections among inpatients in Southern China from 2008 to 2013. PLoS One. 2016;11:e0149960. https://doi.org/10.1371/journal.pone.0149960. 

  44. Octavia S, Wang Q, Tanaka MM, Kaur S, Sintchenko V, Lan R. Delineating community outbreaks of Salmonella enterica serovar Typhimurium by use of whole-genome sequencing: insights into genomic variability within an outbreak. J Clin Microbiol. 2015;53:1063-1071. https://doi.org/10.1128/JCM.03235-14. 

  45. Gordon NC, Pichon B, Golubchik T, Wilson DJ, Paul J, Blanc DS, et al. Whole-genome sequencing reveals the contribution of long-term carriers in Staphylococcus aureus outbreak investigation. J Clin Microbiol. 2017;55:2188-2197. https://doi.org/10.1128/JCM.00363-17. 

  46. Fujikura Y, Yuki A, Hamamoto T, Ichimura S, Kawana A, Ohkusu K, et al. Evaluation and validity of a polymerase chain reaction-based open reading frame typing method to dissect the molecular epidemiology for Acinetobacter baumannii in an epidemiologic study of a hospital outbreak. Am J Infect Control. 2016;44:e275-e278. https://doi.org/10.1016/j.ajic.2016.03.059. 

  47. Merkier AK, Rodriguez MC, Togneri A, Brengi S, Osuna C, Pichel M, et al. Outbreak of a cluster with epidemic behavior due to Serratia marcescens after colistin administration in a hospital setting. J Clin Microbiol. 2013;51:2295-2302. https://doi.org/10.1128/JCM.03280-12. 

  48. Hindler JA, Humphries RM. Colistin MIC variability by method for contemporary clinical isolates of multidrug-resistant Gram-negative bacilli. J Clin Microbiol. 2013;51:1678-1684. https://doi.org/10.1128/JCM.03385-12. 

  49. Charlton CL, Hindler JA, Turnidge J, Humphries RM. Precision of vancomycin and daptomycin MICs for methicillin-resistant Staphylococcus aureus and effect of subculture and storage. J Clin Microbiol. 2014;52:3898-3905. https://doi.org/10.1128/JCM.01571-14. 

  50. Steinman A, Masarwa S, Tirosh-Levy S, Gleser D, Kelmer G, Adler A, et al. Methicillin-Resistant Staphylococcus aureus spa type t002 outbreak in horses and staff at a veterinary teaching hospital after its presumed introduction by a veterinarian. J Clin Microbiol. 2015;53:2827-2831. https://doi.org/10.1128/JCM.00090-15. 

  51. Bosch T, Lutgens SPM, Hermans MHA, Wever PC, Schneeberger PM, Renders NHM, et al. Outbreak of NDM-1-Producing Klebsiella pneumoniae in a Dutch hospital, with interspecies transfer of the resistance plasmid and unexpected occurrence in unrelated health care centers. J Clin Microbiol. 2017;55:2380-2390. https://doi.org/10.1128/JCM.00535-17. 

  52. Xiao M, Sun ZY, Kang M, Guo DW, Liao K, Chen SC, et al. Five-year national surveillance of invasive candidiasis: Species distribution and azole susceptibility from the China hospital invasive fungal surveillance net (CHIF-NET) study. J Clin Microbiol. 2018;56:e00577-18. https://doi.org/10.1128/JCM.00577-18. 

  53. Fukuda K, Limmathurotsakul D, Okeke IN, Shetty N, van Doorn R, Feasey NA, et al. Surveillance and Epidemiology of Drug Resistant Infections Consortium (SEDRIC): supporting the transition from strategy to action. Wellcome Open Res. 2018;3:59. https://doi.org/10.12688/wellcomeopenres.14586.2. 

  54. Park CE, Jeong NY, Yang MJ, Kim HW, Joo SI, Kim KH, et al. Study on the Standardization of a surveillance culture laboratory in infection control fields. Korean J Clin Lab Sci. 2018;50:359-369. https://doi.org/10.15324/kjcls.2018.50.3.359. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로