$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

HPLC를 이용한 근소만 조간대 퇴적물내의 저서미세조류 현존량, 군집 및 광생리의 월 변화 분석
Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos 원문보기

바다 : 한국해양학회지 = The sea : the journal of the Korean society of oceanography, v.24 no.1, 2019년, pp.1 - 17  

김은영 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ,  안성민 (한국해양과학기술원 해양생태연구센터) ,  최동한 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과) ,  이호원 (한국해양과학기술원 해양생태연구센터) ,  노재훈 (한국해양대학교 해양과학기술전문대학원 해양과학기술융합학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 태안반도 근소만 갯벌에서 저서미세조류(MPB)의 현존량, 군집조성 및 광생리의 월변화에 대해 알아보기 위하여 2016년 10월부터 2017년 10월까지 월 1~2회씩 총 16회에 걸쳐 갯벌 표층에 분포하는 저서미세조류 색소를 HPLC (High performance liquid chromatography)를 이용 분석하였다. 갯벌 표층 1 cm 깊이에 분포하는 저서미세조류의 광합성 색소 중 현존량의 지표로 사용되는 총 chlorophyll a (TChl a) 농도는 연중 40.4~218.9 mg m-2의 범위를 보였다. 2월 24일에 최대값이 나타났고 3월에도 높은 값을 보인 뒤 이후 감소하였다. 저서미세조류의 현존량은 동계에 높고 하계에 낮은 값을 나타냈다. Phaeophorbide a 농도의 월별 변동을 통해 동계에 상위 포식자의 낮은 포식압이 저서미세조류 동계번성에 일부 기여한 것으로 사료된다. 또한 주요지시색소를 이용한 저서미세조류 군집조성의 분석결과 저서규조류의 지시색소인 fucoxanthin의 농도가 연중 가장 높게 나타났다. Chlorophyll b(녹조류), peridinin(와편모조류)을 제외한 대부분의 지시색소의 농도는 동계에 증가하였으나, fucoxanthin의 농도 증가율이 가장 높아 fucoxanthin을 제외한 TChl a에 대한 주요지시색소의 상대비는 동계에 감소하는 경향이 있었다. 형광광도계와 산소미세전극을 이용하여 측정한 퇴적물 내 Chl a와 산소 농도의 연직분포 특성은 퇴적층 표면에서 깊이가 깊어질수록 Chl a 값과 산소 농도가 함께 감소하는 경향을 보였고, 동계로 갈수록 이런 경향이 더욱 뚜렷하게 나타났다. 하지만 5~7월의 Chl a 농도는 다른 기간에 비해 12 mm까지 연직으로 유사하게 나타났으나, 5월의 산소 농도 분포는 1 mm 이하에서 급격하게 감소하였다. 같은 시기에 phaeophorbide a 농도가 증가하는 것으로 보아 저서동물의 포식활동에 의한 산소 소비량이 증가하였을 가능성이 있으며, 저서동물의 생물교란에 의해 저서미세조류의 세포가 아래로 옮겨진 것으로 추측된다. 한편, 저서미세조류의 광적응의 지표로 사용되는 diadinoxanthin (DD)과 diatoxanthin (DT)로 얻은 상대적인 비(DT/(DD+DT))는 10월에서 3월로 갈수록 감소하며, 5월에는 증가하는 것으로 볼 때, 월별로 Xanthophyll cycle의 활성 정도에 차이가 있었음을 알 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구의 목적은 근소만에 서식하는 저서미세조류의 월별 현존량과 강 수준의 군집조성의 변동에 대해 조사하고, 저서미세조류의 월별 연직분포 양상과 광보호 색소를 이용한 광적응의 월별 특성에 대해 알아보는 것이다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
저서미세조류의 구성은? 퇴적물 상부층에 서식하는 저서미세조류(Microphytobenthos, MPB)는 하구역 일차생산력의 50%까지 기여하는 중요한 일차생산자이다(Underwood and Kromkamp, 1999). 저서미세조류는 저서성 규조류, 남조류, 녹조류, 유글레나, 광합성 박테리아 등으로 구성되고, 퇴적물 식자의 먹이원인 동시에, 수층으로 재부유 시 부유물 식자의 중요한 먹이원이다(MacIntyre et al., 1996; Sullivan and Moncreiff, 1990; Heip et al.
현미경을 이용한 저서미세조류 분석 방법의 단점은? 현미경을 이용한 저서규조류 군집 연구에는 인천연안 갯벌(Shim and Joe, 1984), 금강하구 조간대(Kim and Cho, 1985), 만경 동진 갯벌(Oh, 1990) 등에서 수행되었다. 하지만 현미경을 이용한 분석 방법은 실험자의 전문성과 많은 시간이 요구되므로 최근에는 HPLC (High performance liquid chromatography)를 이용한 저서미세조류 군집 연구가 활발히 진행되고 있다. HPLC는 시료 내 각 지시색소의 정량적 분석을 가능케 하였으며, 따라서 주요색소(chlorophyll a)를 통해 현존량을 추정하거나, 지시색소(marker pigments)를 이용하여 강(class) 수준의 군집조성을 파악할 수 있다(Lee et al.
HPLC의 섭식강도 파악 측면에서의 장점은? , 2009). 뿐만 아니라 chlorophyll 분해산물을 통해 저서미세조류 군집의 생리적 상태와 상위포식자에 의한 섭식강도(grazing intensity) 파악에도 응용할 수 있어 활용 가치가 높다(Bidigare et al., 1986; Burkill et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (81)

  1. An, S.M., D.H. Choi, H. Lee and J.H. Noh, 2017. Identification of benthic diatoms isolated from the eastern tidal flats of the Yellow Sea: Comparison between morphological and molecular approaches. Plos one, 12(6): e0179422. 

  2. An, S.M., D.H. Choi, H. Lee, J.H. Lee and J.H. Noh, 2018. Next-generation sequencing reveals the diversity of benthic diatoms in tidal flats. Algae, 33(2): 167-180. 

  3. Admiraal, W., 1984. The ecology of estuarine sediment inhabiting diatoms. Prog. phycol. Res., 3: 269-322. 

  4. Barranguet, C., P.M.J. Herman and J.J. Sinke, 1997. Microphytobenthos biomass and community composition studied by pigment biomarkers: importance and fate in the carbon cycle of a tidal flat. J. Sea. Rea., 38: 59-70. 

  5. Bebout, B.M. and F. Garcia-Pichel, 1995. UV B-induced Vertical Migrations of Cyanobacteria in a Microbial Mat. Environ. Microbiol., 61: 4215-4222. 

  6. Bidigare, R.P., T.J. Frank, C. Zastrow and J.M. Brooks, 1986. The distribution of algal chlorophylls and their degradation products in the Southern Ocean. Deep-Sea Res., 33: 923-937. 

  7. Brown, B.E., R.P. Dunne, M.E. Warner, I. Ambarsari, W.K. Fitt, W. Gibb and D.G. Cummings, 2000. Damage and recovery of Photosystem II during a manipulative field experiment on solar bleaching in the coral Goniastrea aspera. Mar. Ecol. Prog. Ser., 195: 117-124. 

  8. Buffan-Dubau, E. and K.R. Carman, 2000. Extraction of benthic microalgal pigments for HPLC analyses. Mar. Ecol. Prog. Ser., 204: 293-297. 

  9. Burkill, P.H., R.F.C Mantoura, C.A. Llewellyn and N.J.P. Owens, 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol., 93: 581-590. 

  10. Cadee, G.C. and J. Hegeman, 1974. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res., 8: 260-291. 

  11. Chan, A.T., 1978. Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. I. Growth under continuous light. J Phycol., 14: 396-402. 

  12. Choi, Y.H., Y.S. Choi, Y.S. Cho, Y.T. Kim and S.R. Jeon, 2016. A study on the habitat suitability considering survival, Growth, Environment for Ruditapes philippinarum in Geunso Bay (Pado and Beopsan). J. Korean. Soc. Mar. Environ. Saf., 22: 723-730. 

  13. Colijn, F. and V.N. de Jonge, 1984. Primary production of microphytobenthos in the Ems-Dollard Estuary. Mar. Ecol. Prog. Ser., 14: 185-196. 

  14. Consalvey, M, D.M. Paterson and G.J.C Underwood, 2004. The ups and downs of life in a benthic biofilm: Migration of benthic diatoms. Diatom Res., 19: 181-202. 

  15. de Jonge, V.N. and F. Colijn, 1994. Dynamics of microphytobenthos biomass in the Ems estuary. Mar. Ecol. Prog. Ser., 104: 185-196. 

  16. Davis, M.W. and C.D. Mcintire, 1983. Effects of physical gradients on the production dynamics of sediment-associated algae. Mar. Ecol. Prog. Ser., 13: 103-114. 

  17. Demers, S., S. Roy, R. Gagnon and C. Vignault, 1991. Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): a photo-protection mechanism. Mar. Ecol. Prog. Ser., 76: 185-193. 

  18. Denis, L., F. Gevaert and N. Spilmont, 2012. Microphytobenthic production estimated by in situ oxygen microprofiling: short-term dynamics and carbon budget implications. J. Soils sediments, 12: 1517-1529. 

  19. Du, G.Y., M. Son, S. An and I.K. Chung, 2010. Temporal variation in the vertical distribution of microphytobenthos in intertidal flats of the Nakdong River esturary, Korea. Estuar. Coast. Shelf Sci., 86: 62-70. 

  20. Elisabeth, A. and J.M. Bernhard, 1995. Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm. Mar. Ecol. Prog. Ser., 116: 137-151. 

  21. EPA, 1997. Method 445.0. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. 8-9 pp. 

  22. Falkowski, P.G. and T.G. Owens, 1980. Light-shade adaptation: 2 strategies in marine phytoplankton. Plant Physiol., 66: 592-595. 

  23. Forster, R.M. and J.C. Kromkamp, 2004. Modelling the effects of chlorophyll fluorescence from subsurface layers on photosynthetic efficiency measurements in microphytobenthic algae. Mar. Ecol. Prog. Ser., 264: 9-22. 

  24. Frank, H.A. and R.J. Cogdell, 1996. Carotenoids in photosynthesis. Photochem. Photobiol., 63: 257-364. 

  25. Gould, D.M. and E.D. Gallagher, 1990. Field measurements of specific growth rate, biomass, and primary production of benthic diatoms of Savin Hill Cove, Boston. Limnol. Oceanogr., 35: 1757-1770. 

  26. Goto, N., O. Mitamura and H. Terai, 2000. Seasonal variation in primary production of microphytobenthos at the Isshiki intertidal flat in Mikawa Bay. Limnol. (Japanese), 1: 133-138. 

  27. Halldal, P., 1970. The photosynthetic apparatus of microalgae and its adaptation to environmental factors. In: Photobiology of microorganisms, edited by Halldal, P., Wiley, New York, 17-56 pp. 

  28. Hay, S.I., T.C. Maitland and D.M. Paterson, 1993. The speed of diatom migration through natural and artificial substrata. Diatom Res., 8: 371-384. 

  29. Heip, C.H.R., N.K. Goosen, P.M.J. Herman, J. Kromkamp, J.J. Middelburg and K. Soetaert, 1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanogr. Mar. Biol. Ann. Rev., 33: 1-149. 

  30. Hejdukova, E., 2016. Tolerance of pennate diatoms (Bacillariophyceae) to experimental freezing: comparison of polar and temperate strains. Ph.D. Thesis, Charles University, Czech, 13-14, 43-44 pp. 

  31. Hwang, C.Y. and B.C. Cho, 2005. Measurement of net photosynthetic Rates in intertidal flats of Ganghwa-gun and Incheon north harbor using oxygen microsensors. J. Korean Soc. Ocean., 10: 31-37. 

  32. Jesus, B., V. Brotas, M. Marani and D.M. Paterson, 2005. Spatial dynamics of microphytobenthos determined by PAM fluorescence. Estuar. Coast. Shelf Sci., 68: 547-556. 

  33. Jonsson, B., K. Sundback and C. Milsson, 1994. An upright life-form of an epipelic motile diatom: on the behavior of Gyrosigma balticum. Eur. J. Phycol., 29: 11-15. 

  34. Kim, D.S. and K.H. Kim, 2008. Tidal and seasonal variations of nutrients in Keunso bay, the yellow sea. Ocean Polar Res., 30(1): 1-10. 

  35. Kim, J.H. and K.J. Cho, 1985. The Physico-chemical properties of sediment, the species composition and biomass of benthic diatoms in the intertidal zone of Kum river estuary. J. Ecol. Environ., 8: 21-29. 

  36. Kim, J.N., Y.J. Choi, K.H. Im, K.H. Choi and C.W. Ma, 2005. Species composition and seasonal variation of decapod crustacean assemblage in Hampyeong Bay. Korea. J. Kor. Fish Soc., 38(1): 20-28. 

  37. Kingston, M.B. and J.S. Gough, 2009. Vertical migration of a mixed-species Euglena (Euglenophyta) assemblage inhabiting the high-intertidal sands of Nye beach, Oregon. J. Phycol., 45: 1021-1029. 

  38. KIOST, 2010. Studies on sediments waters and biota to understand major environmental factors in rehabilitation of degraded tidal flats. Korean Institute of Ocean Science and Technology. BSPE98462-2253-5. 436 p. 

  39. Krembs, C., H. Eicken and J.W. Deming, 2011. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. PNAS, 108: 3653-3658. 

  40. Kromkamp, J.C., C. Barranguet and J. Peene, 1998. Determination of microphytobenthos PSII quantum efficiency and phytosynthetic activity by means of variable chlorophyll fluorescence. Mar. Ecol. Prog. Ser., 162: 45-55. 

  41. Kuhl, M., R.N. Glud, H. Ploug, N.B. Ramsing, 1996. Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol., 32: 799-812. 

  42. Larras, F., B. Montuelle, F. Rimet, N. Chevre, and A.Bouchez, 2014. Seasonal shift in the sensitivity of a natural benthic microalgal community to a herbicide mixture: impact on the protective level of thresholds derived from species sensitivity distributions. Ecotoxicology, 23(6): 1109-1123. 

  43. Lee, H.Y., 2013. Diversity and biomass of benthic diatoms in Hampyeong bay tidal flats. Korean J. Environ. Biol., 31(4): 295-301. 

  44. Lee, I.G., S.M. Boo and S.H. Lee, 2004. Diversity and system of Microalgae. Life Science Publishing Co., Lehi, 66 pp. 

  45. Lee, Y.W., 2001. Studies on pigment analysis of microphytobenthos by HPLC in sediment of Gomso Bay, Korea. M.S. Thesis, Pukyong National University, Busan, 56-69 pp. 

  46. Lee, Y.W., E.J. Choi, Y.S. Kim and C.K. Kang, 2009. Seasonal variations of microphytobenthos in sediments of the estuarine muddy sandflat of Gwangyang Bay: HPLC Pigment Analysis. J. Korean Soc. Oceanogr., 14: 48-55. 

  47. Lukatelich, R.J. and A.J. McComb, 1986. Distribution and abundance of benthic microalgae in a shallow southwestern Australian esturarine system. Mar. Ecol. Prog. Ser., 27: 287-297. 

  48. MacIntyre, H.L., R.J. Geider and D.C. Miller, 1996. Microphytobenthos: The ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. 1. Distribution, abundance and primary production. Estuar. Coast., 19: 186-201. 

  49. Meyer, A.A., M. Tackx and N. Daro, 2000. Xanthophyll cycling in Phaeocystis globosa and Thalassiosira sp.: a possible mechanism for species succession. J. Sea Res., 43: 273-384. 

  50. Min, W.G., D.S. Kim and J.H. Le, 2006. Community structure and spatial variation of meiobenthos associated with and artificial structure. J. Kor. Fish Soc., 39: 223-230. 

  51. NASA, 2012. The Fifth SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-5). NASA ocean color paper NASA/TM-2012-217503, 12 p. 

  52. Nielsen, L.P., P.B. Christensen and N.P. Revsbech, 1990. Denitrification and photosynthesis in stream sediment studied with microsensors and whole-core techniques. Limnol. Oceanogr., 35: 1135-1144. 

  53. Nowicki, B.I. and S.W. Nixon, 1985. Benthic community metabolism in a coastal lagoon ecosystem. Mar. Ecol. Prog. Ser., 22: 21-30. 

  54. Oh, S.H., 1990. Environmental characteristics and diatom communities on the Mangyung-Dongjin Tidal flat, West coast of Korea. M.D. Thesis, Seoul National University, Seoul, 99 p. 

  55. Oh, S.J., C.H. Moon and M.O. Park, 2004. HPLC analysis of biomass and community composition of microphytobenthos in the Saemankeum tidal flat, west coast of Korea. J. Kor. Fish Soc., 37: 215-225. 

  56. Olaizola, M. and H.Y. Yamamoto, 1994. Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros-muelleri (Bacillariophyceae). J. phycol., 20: 606-612. 

  57. Perkins, R.G., K. Oxborough, A.R.M. Hanlon, G.J.C. Underwood and N.R. Baker, 2002. Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilm? Mar. Ecol. Prog. Ser., 228: 47-56. 

  58. Perry, M.J., M.C. Talbot and S.A. Alberts, 1981. Photoadaptation in marine phytoplankton: response of the photosynthetic unit. Mar Biol., 62: 91-101. 

  59. Plante-Cuny, M.R. and A. Bodoy, 1987. Biomasse et production primarie du phytoplankton et du microphytobenthos de deux biotopes sableux (Golfe de Fos, France). Oceanology Acta.,10: 223-237. 

  60. Prezelin, B.B. and B.M. Sweeney, 1978. Photoadaptation of photosynthesis in Gonyaulax polyedra. Mar. Biol., 48: 17-35. 

  61. Pesce, S., I. Batisson, C. Bardot, C. Fajon, C. Portelli, B. Montuelle and J. Bohatier, 2009. Response of spring and summer riverine microbial communities following glyphosate exposure. Ecotoxicol. Environ. Saf., 72(7): 1905-1912. 

  62. Raven, P.H., P.F. Evert and S.E. Eichorn, 1992. Biology of Plants. Worth Publishers, New York, 791 pp. 

  63. Riper, D.M., T.G. Owens and P.G. Falkowski, 1979. Chlorophyll turnover in Skeletonema costatum, a marine plankton diatom. Plant Physiol., 64: 49-54. 

  64. Roy, S., C. Llewelly, E.S. Egeland and G. Johnsen, 2011. Phytoplankton pigments (Characterization, chemotaxonomy and Applications of Oceanography). Cambridge University Press, Cambridge, 37, 46-54 pp. 

  65. Serodio, J., J.M. da Silca, F. Catarino, 1997. Non-destructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chl-a fluorescence. J. phycol., 33: 545-553. 

  66. Shim, J.H. and B.C. Joe, 1984. Community composition of microphytobenthos living in intertidal zone near Incheon, Symposium of College of Natural science, Seoul National University, 9: 135-150. 

  67. Shin, A.Y., D.S. Kim, T.W. Kang, J.H. Oh, J.M. Lee and J.S. Hong, 2016. Seasonal fluctuation of meiobenthic fauna community at Keunso tidal flat in Taean, Korea. J. Korean soc. Ocean., 21(4): 144-157. 

  68. Sukenik, A., K.D. Wyman, J. Bennnett and P.G. Falkowski, 1987. A novel mechanism for regulating the excitation of photosystem II in a green alga. Nature Lond., 327: 704-707. 

  69. Sullivan, M.J. and F.C. Daiber, 1975. Light, nitrogen, and phosphorous limitation of edaphic algae in a Delaware salt marsh. J. Exp. Mar. Biol. Ecol., 18: 79-88. 

  70. Sullivan, M.J. and C. Moncreiff, 1990. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analysis, Mar. Ecol. Prog. Ser., 32: 149-159. 

  71. Sun, M.Y., R.C. Aller and C. Lee, 1994. Spatial and temporal distributions of sedimentary chloropigments as indicators of benthic processes in Long Island Sound. J. Mar. Res., 52: 149-176. 

  72. Underwood, G.J.C. and J. Kromkamp, 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Adv. Ecol. Res., 29: 93-153. 

  73. van Leeuwe, M.A., V. Brotas, M. Consalvey, R.M. Forster, D. Gillespie, B. Jesus, J. Roggeveld and W.W.C. Gieskes, 2008. Photoacclimation in microphytobenthos and the role of xanthophyll pigments. Eur. J. Phycol., 43(2): 123-132. 

  74. Varela, M. and E. Penas, 1985. Primary production of benthic microalgae in an intertidal sand flat of the Ria de Arosa, NM spain. Mar. Ecol. Prog. Ser., 25: 111-119. 

  75. Welsh, D.T., 2000. Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiology Reviews, 24: 263-290. 

  76. Woods Hole, 1997. U.S. Joint Global Ocean Flux Study, Bermuda Atlantic Time-series Study. Data Report for BATS 61-BATS 72. 

  77. Yallop, M.L., B. Winder, D.M. Paterson and L.J. Stal, 1994. Comparative structure, Primary production and biogenic stabilization of cohensive and non-cohensive marine sediments inhabited by microphytobenthos. Estuar. Coast. Shelf Sci.,39: 565-582. 

  78. Yoo, M.H. and J.K. Choi, 2005. Seasonal distribution and primary production of microphytobenthos on an intertidal mud flat of the Janghwa in Ganghwa Island, Korea. J. Korean Soc. Ocean., 10: 8-18. 

  79. Young, A.J. and H.A. Frank, 1996. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. J. Photochem. Photobiol. B: Biol., 36: 3-15. 

  80. Yun, M.S., C.H. Lee and I.K. Chung, 2009. Influence of Temperature on the Photosynthetic Responses of Benthic Diatoms: Fluorescence Based Estimates. J. Korean Soc. Ocean., 14(2): 118-126. 

  81. Zapata, M., F. Rodriguez and L. Garrido, 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser., 195: 29-45. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로