$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Atomic Layer Deposition의 두께 변화에 따른 NCM 양극에서의 고전압 리튬 이온 전지의 전기화학적 특성 평가
Electrochemical Performance of High-Voltage Lithium-Ion Batteries with NCM Cathode Varying the Thickness of Coating Layer by Atomic Layer Deposition 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.22 no.2, 2019년, pp.60 - 68  

임진솔 (한양대학교재료화학공학과) ,  안진혁 (한양대학교재료화학공학과) ,  김정민 (성균관대학교화학공학과) ,  성시준 (DGIST 태양에너지융합연구센터) ,  조국영 (한양대학교재료화학공학과)

초록
AI-Helper 아이콘AI-Helper

이차 전지의 고전압 구동은 기존 셀 구조의 변화 없이도 고용량을 구현할 수 있는 유용한 접근 방법 중에 하나이나, 전극 표면에서의 극심한 부반응과 전극 활물질의 구조 붕괴 등과 같은 문제를 야기하게 된다. 본 연구에서는 니켈-망간-코발트 삼성분계(NCM) 활물질을 도입한 양극의 고전압 구동을 위해 원자층 증착법 (Atomic Layer Deposition, ALD)을 통해 전극판 표면에 $Al_2O_3$와 ZnO층으로 구성된 코팅 층을 형성하였다. 기존 ALD법으로 제조되는 박막에 비해 유사한 조건에서도 두꺼운 Al-doped ZnO (AZO)층을 최초로 형성하였고, 코팅된 AZO층의 두께를 달리한 NCM 기반의 양극판을 제조하였다. ALD 코팅된 양극이 도입된 코인셀을 제조하여 두껍게 형성된 코팅 층의 두께에 따른 고전압에서 충방전 거동을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

High-voltage operation of the lithium ion battery is one of the advantageous approaches to obtain high energy capacity without changing the conventional cell components and structure. However, operating at harsh condition inevitably results in severe side reactions at the electrode surface and struc...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 태양전지에서 주로 사용된 AZO를 NCM523 양극상에 ALD 코팅을 수행하고, 코팅 횟수를 통해 두께를 조절하여 형성된 코팅층에 의해 발현되는 전기화학적 특성을 평가하였다. 전도성을 부여하는 ZnO 층을 증착 사이클 별로 나눠서 두께를 조절하였고 Al2O3은 모든 ZnO 증착에 대해서 최상단에 한 사이클의 코팅만 진행하여 고전압으로 구동하였을 때의 전기화학특성을 보고한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
원자층 증착법은 특징은 무엇이며 어떠한 공정조건을 갖추는가? 그 중 원자층 증착법(Atomic Layer Deposition, ALD)는 자체적으로 재료 표면에서의 반응을 기반으로 하기 때문에 복잡한 모양과 나노 구조를 균일하게 코팅할 수 있으며 대부분의 공정이 200oC 이하의 온도에서 진행된다. 기존에 보고된 연구결과에 의하면, ALD는 태양전지나 연료전지에 활발히 사용할 뿐만 아니라 리튬 이차전지 등 여러 에너지 저장 시스템에 있어서 양극 및 음극 코팅, 전해질 코팅, 전도성 코팅, 분리막 코팅 등 여러 재료와 기능에 따라서 다양한 향상된 성능을 부여할 수 있다.
리튬 이온 전지는 무엇인가? 리튬 이온 전지는 다른 에너지 공급 장치들과 비교했을 때 높은 효율로 반복적인 충전과 방전이 가능한 에너지 저장 장치이다.1) 전자 기기의 개발이 비약적으로 진행되고 있는 현재, 새로운 시스템을 원활히 구현할 수 있는 높은 에너지 밀도와 출력 효율 및 반복적인 충전 및 방전 진행에 있어서 손실이 적은 에너지 저장 장치의 개발은 필수적으로 이루어져야 하며 이를 성취하기 위해 지속적인 노력이 이루어지고 있다.
코발트 원재료의 단점을 보완하기 위한 새로운 전극의 개발은 어떤 재료를 주로 사용하는가? 그러나 현재 일반적으로 사용하고 있는 전극 재료들, 특히, 양극에서 주로 사용되던 리튬 코발트 산화물(LCO)은 높은 안정성을 나타내지만 낮은 이론적 용량과 높은 가격대를 형성하는 코발트 원재료의 사용으로 인해 새로운 전극의 개발이 요구된다.2) 가장 대표적인 새로운 대안으로는 니켈, 망간, 코발트의 융합을 통한 삼성분계의 NCM계열의 양극 재료이다. LiNi0.
질의응답 정보가 도움이 되었나요?

참고문헌 (28)

  1. J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, and Z.X. Shen, 'Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design' Adv. Sci., 5, 1700322 (2018). 

  2. B. Scrosati and J. Garche, 'Lithium Batteries: Status, Prospects and Future' J. Power Sources, 195, 2419-2430 (2010). 

  3. S. Jung, 'Mathematical Model of Lithium-Ion Batteries with Blended-Electrode System' J. Power Sources, 264, 184-194 (2014). 

  4. B. Reuter, 'Assessment of Sustainability Issues for the Selection of Materials and Technologies during Product Design: A Case Study of Lithium-Ion Batteries for Electric Vehicles' Int. J. Interactive Design and Manufacturing (IJIDeM), 10, 217-227 (2016). 

  5. Y.S. Jung, A.S. Cavanagh, A.C. Dillon, M.D. Groner, S.M. George, and S.-H. Lee, 'Enhanced Stability of $LiCoO_2$ Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition' J. Electrochem. Soc., 157, A75-A81 (2010). 

  6. E. Kazyak, K.N. Wood, and N.P. Dasgupta, 'Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments' Chem. Mater., 27, 6457-6462 (2015). 

  7. S.-H. Kang and M.M. Thackeray, 'Enhancing the Rate Capability of High Capacity $xLi_2MnO_3{\cdot}(1-x)LiMO_2$ (MMn, Ni, Co) Electrodes by $Li-Ni-PO_4$ Treatment' Electrochem. Commun., 11, 748-751 (2009). 

  8. Y.-J. Kim, H. Lee, H. Noh, J. Lee, S. Kim, M.-H. Ryou, Y.M. Lee, and H.-T. Kim, 'Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic-Organic Composite Protective Layer' ACS Appl. Mater. Interfaces, 9, 6000-6006 (2017). 

  9. G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G.Q. Lu, and H.-M. Cheng, 'Graphene-Wrapped $Fe_3O_4$ Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries' Chem. Mater., 22, 5306-5313 (2010). 

  10. C. Wang, L. Yin, D. Xiang, and Y. Qi, 'Uniform Carbon Layer Coated $Mn_3O_4$ Nanorod Anodes with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries' ACS Appl. Mater. Interfaces, 4, 1636-1642 (2012). 

  11. F.-H. Du, B. Li, W. Fu, Y.-J. Xiong, K.-X. Wang, and J.-S. Chen, 'Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li-Ion Battery Anodes with High Structure Stability' Adv. Mater., 26, 6145-6150 (2014). 

  12. M.J. Lacey, F. Jeschull, K. Edstrom, and D. Brandell, 'Functional, Water-Soluble Binders for Improved Capacity and Stability of Lithium-Sulfur Batteries' J. Power Sources, 264, 8-14 (2014). 

  13. M.E. Donders, W.M. Arnoldbik, H.C.M. Knoops, W.M.M. Kessels, and P.H.L. Notten, 'Atomic Layer Deposition of $LiCoO_2$ Thin-Film Electrodes for All-Solid-State Li-Ion Micro-Batteries' J. Electrochem. Soc., 160, A3066-A3071 (2013). 

  14. X. Wang and G. Yushin, 'Chemical Vapor Deposition and Atomic Layer Deposition for Advanced Lithium Ion Batteries and Supercapacitors' Energy & Environ. Sci., 8, 1889-1904 (2015). 

  15. N.P. Dasgupta, H.-B.-R. Lee, S.F. Bent, and P.S. Weiss, 'Recent Advances in Atomic Layer Deposition' Chem. Mater., 28, 1943-1947 (2016). 

  16. J. Ahn, E.K. Jang, S. Yoon, S.-J. Lee, S.-J. Sung, D.-H. Kim, and K.Y. Cho, 'Ultrathin $ZrO_2$ on $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ Electrode Surface via Atomic Layer Deposition for High-Voltage Operation in Lithium-Ion Batteries' Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2019.04.123 

  17. Y.S. Jung, A.S. Cavanagh, L.A. Riley, S.H. Kang, A.C. Dillon, M.D. Groner, S.M. George, and S.H. Lee, 'Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries' Adv. Mater., 22, 2172-2176 (2010). 

  18. D. Guan, J.A. Jeevarajan, and Y. Wang, 'Enhanced Cycleability of $LiMn_2O_4$ Cathodes by Atomic Layer Deposition of Nanosized-Thin $Al_2O_3$ Coatings' Nanoscale, 3, 1465-1469 (2011). 

  19. Y.S. Jung, A.S. Cavanagh, Y. Yan, S.M. George, and A. Manthiram, 'Effects of Atomic Layer Deposition of $Al_2O_3$ on the $Li[Li_{0.20}Mn_{0.54}Ni_{0.13}Co_{0.13]}O_2$ Cathode for Lithium-Ion Batteries' J. Electrochem. Soc., 158, A1298-A1302 (2011). 

  20. S. Boukhalfa, K. Evanoff, and G. Yushin, 'Atomic Layer Deposition of Vanadium Oxide on Carbon Nanotubes for High-Power Supercapacitor Electrodes' Energy & Environ. Sci., 5, 6872-6879 (2012). 

  21. H.-M. Cheng, F.-M. Wang, J.P. Chu, R. Santhanam, J. Rick, and S.-C. Lo, 'Enhanced Cycleability in Lithium Ion Batteries: Resulting from Atomic Layer Deposition of $Al_2O_3$ or $TiO_2$ on $LiCoO_2$ Electrodes' J. Phys. Chem. C, 116, 7629-7637 (2012). 

  22. Y.S. Jung, P. Lu, A.S. Cavanagh, C. Ban, G.-H. Kim, S.-H. Lee, S.M. George, S.J. Harris, and A.C. Dillon, 'Unexpected Improved Performance of ALD Coated $LiCoO_2$ /Graphite Li-Ion Batteries' Adv. Energy Mater., 3, 213-219 (2013). 

  23. A.Y. Shenouda and H.K. Liu, 'Studies on Electrochemical Behavior of Zinc-Doped $LiFePO_4$ for Lithium Battery Positive Electrode' J. Alloys Compd., 477, 498-503 (2009). 

  24. J.-Z. Kong, C. Ren, G.-A. Tai, X. Zhang, A.-D. Li, D. Wu, H. Li, and F. Zhou, 'Ultrathin ZnO Coating for Improved Electrochemical Performance Of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Material' J. Power Sources, 266, 433-439 (2014). 

  25. X. Xiao, P. Lu, and D. Ahn, 'Ultrathin Multifunctional Oxide Coatings for Lithium Ion Batteries' Adv. Mater., 23, 3911-3915 (2011). 

  26. O.B. Chae, S. Park, J.H. Ryu, and S.M. Oh, 'Performance Improvement of Nano-Sized Zinc Oxide Electrode by Embedding in Carbon Matrix for Lithium-Ion Batteries' J. Electrochem. Soc., 160, A11-A14 (2013). 

  27. C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. Minguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M.I. Dar, M.K. Nazeeruddin, and H.J. Bolink, 'Flexible High Efficiency Perovskite Solar Cells' Energy & Environ. Sci., 7, 994-997 (2014). 

  28. Z.-L. Tseng, C.-H. Chiang, S.-H. Chang, and C.-G. Wu, 'Surface Engineering of ZnO Electron Transporting Layer via Al Doping for High Efficiency Planar Perovskite Solar Cells' Nano, 28, 311-318 (2016). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로