$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

2차원 이황화몰리브덴의 성질, 제조 및 에너지 저장 소자 응용
Properties, Preparation, and Energy Storage Applications of Two-dimensional Molybdenum Disulfide 원문보기

공업화학 = Applied chemistry for engineering, v.30 no.2, 2019년, pp.133 - 140  

최봉길 (강원대학교 화학공학과)

Abstract AI-Helper 아이콘AI-Helper

Two-dimensional (2D) ultrathin molybdenum dichalcogenides $MoS_2$ has gained a great deal of attention in energy conversion and storage applications because of its unique morphology and property. The 2D $MoS_2$ nanosheets provide a high specific surface area, 2D charge channel,...

주제어

표/그림 (3)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

이론/모형

  • The controlled morphology of conducting polymer/MoS2 composite electrodes showed enhanced electrochemical performances for supercapacitor applications. The Mn3O4 was incorporated into MoS2 using a hydrothermal and chemical precipitation method. This hybrid electrode showed a high specific capacitance of 119.
  • Among them, MoS2 has been attracted a great deal of attention for development of supercapacitors because of its high theoretical capacitance value and unique structural properties of MoS2. The porous MoS2 thin films were prepared by Choudhary and coworkers based on a direct magnetron sputtering method[47]. The MoS2 film electrode showed a high gravimetric capacitance of 330 F/g at 10 V/s (high rate capability) and a good cycling stability of 97% retention over 5,000 cycles of charging/discharging measurement.
본문요약 정보가 도움이 되었나요?

참고문헌 (73)

  1. M. R. Lukatskaya, B. Dunn, and Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage, Nat. Commun., 7, 12647-12659 (2016). 

  2. M. Salanne, B. Rotenber, K. Naoi, K. Kaneko, P.-L. Taberna, C. P. Grey, B. Dunn, and P. Simon, Efficient storage mechanisms for building better supercapacitors, Nat. Energy, 1, 16070-16079 (2016). 

  3. P. Simon, Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin?, Science, 343, 1210-1211 (2014). 

  4. G. Z. Chen, Supercapacitor and supercapattery as emerging electrochemical energy stores, Int. Mater. Rev., 62, 173-202 (2017). 

  5. X. Xiao, H. Wang, P. Urbankowski, and Y. Gogotsi, Topochemical synthesis of 2D materials, Chem. Soc. Rev., 47, 8744-8765 (2018). 

  6. X. Ke, J. M. Prahl, J. I. D. Alexander, J. S. Wainright, T. A. Zawodzinski, and R. F. Savinell, Rechargeable redox flow batteries:Flow fields, stacks and design considerations, Chem. Soc. Rev., 47, 8721-8743 (2018). 

  7. Q. Wang, L. Jiang, and J. Sun, Progress of enhancing the safety of lithium ion battery from the electrolyte aspect, Nano Energy, 55, 93-114 (2019). 

  8. P. Zhang, F. Wang, M. Yu, X. Zhuang, and X. Feng, Two-dimensional materials for miniaturized energy storage devices: From individual devices to smart integrated systems, Chem. Soc. Rev., 47, 7426-7451 (2018). 

  9. F. Zou, Y.-M. Chen, K. Liu, Z. Yu, W. Liang, S. M. Bhaway, M. Gao, and Y. Zhu, Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage, ACS Nano, 10, 377-386 (2016). 

  10. Y. Zou, X. Rui, W. Sun, Z. Xu, Y. Zhou, W. J. Ng, Q. Yan, and E. Fong, Biochemistry-enabled 3D foams for ultrafast battery cathodes, ACS Nano, 9, 4628-4635 (2015). 

  11. A. J. Crowe, K. K. Stringham, J. L. Dimeglio, and B. M. Bartlett, Adsoprtion of aromatic decomposition products from phenyl-containing magnesium-ion battery electrolyte solutions, J. Phys. Chem. C, 121, 7711-7717 (2017). 

  12. Y.-H. Tan, W.-T. Yao, T. Zhang, T. Ma, L.-L. Lu, F. Zhou, H.-B. Yao, and S.-H. Yu, High voltage magnesium-ion battery enabled by nanocluster $Mg_3Bi_2$ alloy anode in noncorrosive electrolyte, ACS Nano, 12, 5856-5865 (2018). 

  13. J. Sun, C. Wu, X. Sun, H. Hu, C. Zhi, L. Houa, and C. Yuan, Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors, J. Mater. Chem. A, 5, 9443-9464 (2017). 

  14. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, Asymmetric supercapacitor electrodes and devices, Adv. Mater., 29, 1605336-1605365 (2017). 

  15. H. Wu and K. Lian, Aqueous based asymmetrical-bipolar electrochemical capacitor with a 2.4 V operating voltage, J. Power Sources, 378, 209-215 (2018). 

  16. K. Nueangnoraj, R. Ruiz-Rosas, H. Nishihara, S. Shiraishi, E. Morallon, D. Cazorla-Amoros, and T. Kyotani, Carbon-carbon asymmetric aqueous capacitor by pseudocapacitive positive and stable negative electrodes, Carbon, 67, 792-794 (2018). 

  17. J.-G. Wang, Y. Yang, Z.-H. Huang, and F. Kang, A high-performance asymmetric supercapacitor based on carbon and carbon- $MnO_2$ nanofiber electrodes, Carbon, 61, 190-199 (2013). 

  18. M. Yang, K. G. Lee, S. J. Lee, S. B. Lee, Y.-K. Han, and B. G. Choi, Three-dimensional expanded graphene-metal oxide film via solid-state microwave irradiation for aqueous asymmetric supercapacitors, ACS Appl. Mater. Interfaces, 7, 22364-22371 (2015). 

  19. F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, and Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Adv., 3, 13059-13084 (2013). 

  20. Q. Wang, J. Yan, and Z. Fan, Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities, Energy Environ. Sci., 9, 729-762 (2016). 

  21. B. Mendoza-Sanchez and Y. Gogotsi, Synthesis of two-dimensional materials for capacitive energy storage, Adv. Mater., 28, 6104-6135 (2016). 

  22. Y. Chen, W. K. Pang, H. Bai, T. Zhou, Y. Liu, S. Li, and Z. Guo, Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes, Nano Lett., 17, 429-436 (2016). 

  23. C. Couly, M. Alhabeb, K. L. Van Aken, N. Kurra, L. Gomes, A. M. Navarro-Suarez, B. Anasori, H. N. Alshareef, and Y. Gogotsi, Asymmetric flexible MXene-reduced graphene oxide microsupercapacitor, Adv. Electron. Mater., 4, 1700339-1700357 (2018). 

  24. Z. Lei, J. Zhang, and X. S. Zhao, Ultrathin $MnO_2$ nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes, J. Mater. Chem., 22, 153-160 (2012). 

  25. F. Ghasemi, M. Jalali, A. Abdollahi, S. Mohammadi, Z. Sanaee, and Sh. Mohajerzadeh, A high performance supercapacitor based on decoration of $MoS_2$ /reduced graphene oxide with NiO nanoparticles, RSC Adv., 7, 52772-52781 (2017). 

  26. K. S. Kumar, N. Choudhary, Y. Jung, and J. Thomas, Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications, ACS Energy Lett., 3, 482-495 (2018). 

  27. W.-J. Zhang and K.-J. Huang, A review of recent progress in molybdenum disulfide-based supercapacitors and batteries, Inorg. Chem. Front., 4, 1602-1620 (2017). 

  28. T. Wang, S. Chen, H. Pang, H. Xue, and Y. Yu, $MoS_2$ -based nanocomposites for electrochemical energy storage, Adv. Sci., 4, 1600289-1600315 (2017). 

  29. Z. S. Iro, C. Subramani, and S. S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci., 11, 10628-10643 (2016). 

  30. G. Zhang, H. Liu, J. Qu, and J. Li, Two-dimensional layered $MoS_2$ : Rational design, properties and electrochemical applications, Energy Environ. Sci., 9, 1190-1209 (2016). 

  31. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenides nanosheets, Nat. Chem., 5, 263-275 (2013). 

  32. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Norskov, Biomimetic hydrogen evolution: $MoS_2$ nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc., 127, 5308-5309 (2005). 

  33. S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Mattenws, J. Li, J. C. Grossman, and J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: $MoSe_2$ versus $MoS_2$ , Nano Lett., 12, 5576-5580 (2012). 

  34. S. Shi, Z. Sun, and Y. H. Hu, Synthesis, stabilization and applications of 2-dimensional 1T metallic $MoS_2$ , J. Mater. Chem. A, 6, 23932-23977 (2018). 

  35. J.-M. Jeong, H. G. Kang, H.-J. Kim, S. B. Hong, H. Jeon, S. Y. Hwang, D. Seo, B. E. Kwak, Y.-K. Han, B. G. Choi, and D. H. Kim, 2D nanosheets: hydraulic power manufacturing for highly scalable and stable 2D nanosheet dispersions and their film electrode application, Adv. Funct. Mater., 28, 1802952-1802964 (2018). 

  36. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U.S.A., 102, 10451-10453 (2005). 

  37. Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, Single-layer semiconducting nanosheets: High-yield preparation and device fabrication, Angew. Chem., Int. Ed., 50, 11093-11097 (2011). 

  38. P. Joensen, R. F. Frindt, and S. R. Morrison, Single-layer $MoS_2$ , Mater. Res. Bull., 21, 457-461 (1986). 

  39. Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H. H. Hng, and H. Zhang, An effective method for the fabrication of few-layer-thick inorganic nanosheets, Angew. Chem. Int. Ed., 51, 9052-9056 (2012). 

  40. P. Cheng, K. Sun, and Y. H. Hu, Mechanically-induced reverse phase transformation of $MoS_2$ from stable 2H to metastable 1T and its memristive behavior, RSC Adv., 6, 65691-65697 (2016). 

  41. S. Reshmi, M. V. Akshaya, B. Satpati, P. K. Basu, and K. Bhattacharjee, Structural stability of coplanar 1T-2H superlattice $MoS_2$ under high energy electron beam, Nanotechnology, 29, 205604-205616 (2018). 

  42. Y. Qi, Q. Xu, Y. Wang, B. Yan, Y. Ren, and Z. Chen, $CO_2$ -induced phase engineering: Protocol for enhanced photoelectrocatalytic performance of 2D $MoS_2$ nanosheets, ACS Nano, 10, 2903-2909 (2016). 

  43. Z. H. Chi, X. M. Zhao, H. Zhang, A. F. Goncharov, S. S. Lobanov, T. Kagayama, M. Sakata, and X. J. Chen, Pressure-induced metallization of molybdenum disulfide, Phys. Rev. Lett., 113, 036802-036805 (2014). 

  44. X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, and T. Chen, Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction, Nat. Commun., 7, 10672-10679 (2016). 

  45. Q. Liu, X. L. Li, Q. He, A. Khalil, D. B. Liu, T. Xiang, X. J. Wu, and L. Song, Gram-scale aqueous synthesis of stable few-layered 1T- $MoS_2$ : Applications for visible-light-driven photocatalytic hydrogen evolution, Small, 11, 5556-5564 (2015). 

  46. Z. P. Liu, Z. C. Gao, Y. H. Liu, M. S. Xia, R. W. Wang, and N. Li, Heterogeneous nanostructure based on 1T-phase $MoS_2$ for enhanced electrocatalytic hydrogen evolution, ACS Appl. Mater. Interfaces, 9, 25291-25297 (2017). 

  47. N. Choudhary, M. Patel, Y. H. Ho, N. B. Dahotre, W. Lee, J. Y. Hwang, and W. Choi, Directly deposited $MoS_2$ thin film electrodes for high performance supercapacitors, J. Mater. Chem. A, 3, 24049-24054 (2015). 

  48. S. S. Karade, D. P. Dubal, and B. R. Sankapal, $MoS_2$ ultrathin nanoflakes for high performance supercapacitors: Room temperature chemical bath deposition (CBD), RSC Adv., 6, 39159-39165 (2016). 

  49. M. Acerce, D. Voiry, and M. Chhowalla, Metallic 1T phase $MoS_2$ nanosheets as supercapacitor, Nat. Nanotechnol., 10, 313-318 (2015). 

  50. N. Thi Xuyen and J. M. Ting, Hybridized 1T/2H $MoS_2$ having controlled 1T concentrations and its use in supercapacitors, Chem. Eur. J., 23, 17348-17355 (2017). 

  51. K. J. Huang, L. Wang, J. Z. Zhang, and K. Xing, $MoS_2$ -based nanocomposites for electrochemical energy storage, J. Electroanal. Chem., 752, 33-40 (2015). 

  52. T. N. Y. Khawula, K. Raju, P. J. Franklyn, L. Sigalas, and K. I. Ozoemena, Symmetric pseudocapacitors based on molybdenum disulfide ( $MoS_2$ )-modified carbon nanospheres: Correlating physicochemistry and synergistic interaction on energy storage, J. Mater. Chem. A, 4, 6411-6425 (2016). 

  53. Y. Zhang, T. He, G. Liu, L. Zu, and J. Yang, One-pot mass preparation of $MoS_2$ /C aerogels for high-performance supercapacitors and lithium-ion batteries, Nanoscale, 9, 10059-10066 (2017). 

  54. J. Wang, Z. Wu, H. Yin, W. Li, and Y. Jiang, Poly(3,4-ethylenedioxythiophene)/ $MoS_2$ nanocomposites with enhanced electrochemical capacitance performance, RSC Adv., 4, 56926-56932 (2014). 

  55. C. Yang, Z. Chen, I. Shakir, Y. Xu, and H. Lu, Rational synthesis of carbon shell coated polyaniline/ $MoS_2$ monolayer composites for high-performance supercapacitors, Nano Res., 9, 951-962 (2016). 

  56. Q. Pan, F. Zheng, X. Ou, C. Yang, X. Xiong, Z. Tang, L. Zhao, and M. Liu, $MoS_2$ decorated $Fe_3O_4/Fe_{1-x}S@C$ nanosheets as high-performance anode materials for lithium ion and sodium ion batteries, ACS Sustain. Chem. Eng., 5, 4739-4745 (2017). 

  57. M. Wang, H. Fei, P. Zhang, and L. Yin, Hierarchically layered $MoS_2$ / $Mn_3O_4$ hybrid architectures for electrochemical supercapacitors with enhanced performance, Electrochim. Acta, 209, 389-398 (2016). 

  58. H. Jeon, J.-M. Jeong, H. G. Kang, H.-J. Kim, J. Park, D. H. Kim, Y. M. Jung, S. Y. Hwang, Y.-K. Han, and B. G. Choi, Scalable water-based production of highly conductive 2D nanosheets with ultrahigh volumetric capacitance and rate capability, Adv. Energy. Mater., 8, 1800227-1800238 (2018). 

  59. D. Xie, D. H. Wang, W. J. Tang, X. H. Xia, Y. J. Zhang, X. L. Wang, C. D. Gu, and J. P. Tu, Binder-free network-enabled $MoS_2$ -PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage, J. Power Sources, 307, 510-518 (2016). 

  60. S. Zhang, B. V. R. Chowdari, Z. Wen, J. Jin, and J. Yang, Constructing highly oriented configuration by few-layer $MoS_2$ : Toward high-performance lithium-ion batteries and hydrogen evolution reactions, ACS Nano, 9, 12464-12472 (2015). 

  61. J. Xu, H. Tang, Y. Chu, and C. Li, Facile synthesis and electrochemical properties of $MoS_2$ nanostructures with different lithium storage properties, RSC Adv., 5, 48492-48499 (2015). 

  62. C. P. Veeramalai, F. Li, H. Xu, T. W. Kimb, and T. Guo, One pot hydrothermal synthesis of graphene like $MoS_2$ nanosheets for application in high performance lithium ion batteries, RSC Adv., 5, 57666-57670 (2015). 

  63. H. Y. Wang, B. Y. Wang, D. Wang, L. Lu, J. G. Wang, and Q. C. Jiang, Facile synthesis of hierarchical worm-like $MoS_2$ structures assembled with nanosheets as anode for lithium ion batteries, RSC Adv., 5, 58084-58090 (2015). 

  64. Y. Zhou, Y. Liu, W. Zhao, R. Xu, D. Wang, B. Li, X. Zhou, and H. Shen, Rational design and synthesis of 3D $MoS_2$ hierarchitecture with tunable nanosheets and 2H/1T phase within graphene for superior lithium storage, Electrochim. Acta, 211, 1048-1055 (2016). 

  65. M. Wu, J. Zhan, K. Wu, Z. Li, L. Wang, B. Geng, L. Wang, and D. Pan, Metallic 1T $MoS_2$ nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance, J. Mater. Chem. A, 5, 14061-14069 (2017). 

  66. T. Wang, C. Sun, M. Yang, G. Zhao, S. Wang, F. Ma, L. Zhang, Y. Shao, Y. Wu, B. Huang, and X. Hao, Phase-transformation engineering in $MoS_2$ on carbon cloth as flexible binder-free anode for enhancing lithium storage, J. Alloys Compd., 716, 112-118 (2017). 

  67. B. Chen, N. Zhao, L. Guo, F. He, C. Shi, C. He, J. Li, and E. Liu, Facile synthesis of 3D few-layered $MoS_2$ coated $TiO_2$ nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries, Nanoscale, 7, 12895-12905 (2015). 

  68. M. Wang, L. Fan, D. Tian, X. Wu, Y. Qiu, C. Zhao, B. Guan, Y. Wang, N. Zhang, and K. Sun, Rational design of hierarchical $SnO_2$ /1T- $MoS_2$ nanoarray electrode for ultralong-Life Li-S batteries, ACS Energy Lett., 3, 1627-1633 (2018). 

  69. Y. C. Jeong, J. H. Kim, S. H. Kwon, J. Y. Oh, J. Park, Y. Jung, S. G. Lee, S. J. Yang, and C. R. Park, Rational design of exfoliated 1T $MoS_2@CNT$ -based bifunctional separators for lithium sulfur batteries, J. Mater. Chem. A, 5, 23909-23918 (2017). 

  70. S. Dan, Y. Delai, L. Ping, T. Yougen, G. Jun, W. Lianzhou, and W. Haiyan, $MoS_2$ /graphene nanosheets from commercial bulky $MoS_2$ and graphite as anode materials for high rate sodium ion batteries, Adv. Energy Mater., 8, 1702383-1702394 (2018). 

  71. Y. Li, Y. Liang, F. C. Robles Hernandez, H. D. Yoo, Q. An, and Y. Yao, Enhancing sodium-ion battery performance with interlayer- expanded $Mo_3$ -PEO nanocomposites, Nano Energy, 15, 453-461 (2015). 

  72. Y. L. Liang, H. D. Yoo, Y. F. Li, J. Shuai, H. A. Calderon, F. C. R. Hernandez, L. C. Grabow, and Y. Yao, Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage, Nano Lett., 15, 2194-2202 (2015). 

  73. Y. Liu, L.-Z. Fan, and L. Jiao, Graphene intercalated in graphene-like $MoS_2$ : A promising cathode for rechargeable Mg batteries, J. Power Sources, 340, 104-110 (2017). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로