$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 2D 나노소재기반 광 센서 소자의 최근 연구 동향
Recent Research Progresses in 2D Nanomaterial-based Photodetectors 원문보기

세라미스트 = Ceramist, v.22 no.1, 2019년, pp.36 - 55  

장혜연 (충북대학교 신소재공학과) ,  남재현 (충북대학교 신소재공학과) ,  조병진 (충북대학교 신소재공학과)

Abstract AI-Helper 아이콘AI-Helper

Atomically thin two-dimensional (2D) nanomaterials, including transition metal dichalcogenides (TMDs), graphene, boron nitride, and black phosphorus, have opened up new opportunities for the next generation optoelectronics owing to their unique properties such as high absorbance coefficient, high ca...

Keyword

질의응답

핵심어 질문 논문에서 추출한 답변
2D 광 흡수물질 중 하나인 그래핀이 가지고 있는 단점은 무엇인가? 그래핀(graphene)은 가장 널리 알려진 2D 광 흡수물질 중의 하나이다. 하지만 에너지 밴드 갭이 없어 암전류(dark current)가 상당히 높으며 이는 광 소자의 검출 성능을 크게 저하시킨다. 최근 그래핀과 유사한 honeycomb 구조를 갖고 있으면서도 밴드 갭이 존재하는 전이금속 디칼코게나이드(TMD, Transition MetalDichalcogenides) 소재가 광 검출 소재로 주목받고 있다.
TMD 물질로 무엇이 있는가? 2D TMD는 MX2 (M: 전이금속, X: 칼코겐) 조성을 갖는 화합물로 층 수, 결정 구조, 원소 조성에 따라 다양한 전기적 또는 광학적 특성을 갖는다. 예를 들면, MoS2, MoSe2, WS2, WSe2, SnS2와 같은 TMD는 높은 캐리어 이동도(mobility)를 갖고 있으며 가시광선 스펙트럼 범위에서 효율적인 광 흡수 특성을 이용한 광전자 소자에 응용이 가능하다.1–4) TMD 소재와 비슷한 에너지 밴드 특성과 에너지 스펙트럼을 가지는 BP(Black Phosphorus)에 대한 광 특성 연구도 활발하게 진행되었다.
광 흡수물질 중 2D 소재로 헤테로 접합 소자 제작이 가능한 이유는 무엇인가? 또한, 층 수에 따라 광전자 특성을 쉽게 제어할 수 있을 뿐만 아니라 투명하고유연하지만 기계적 특성이 우수하여 플렉서블 광전자 분야로도 유망하다. 밴드 갭(band gap)이 서로 다른 2D 소재를 활용하면 매우 좁은 영역의 파장의 빛을 선택적으로 검출하거나 또는 매우 넓은 영역의 빛 스펙트럼을 검출하는 것이 모두 구현 가능하며, 특히, 2D 소재의 표면에는 댕글링 본드(dangling bond)가 없고 수직방향으로 약한 반데르발스(van der Waals) 결합으로 이루어져 있기 때문에 격자 매칭에 제한없는 다양한 헤테로 접합(heterojunction) 소자를 제작하는 것이 가능하다.
질의응답 정보가 도움이 되었나요?

참고문헌 (74)

  1. Yao, J. D., Zheng, Z. Q., Shao, J. M. & Yang, G. W. "Stable, highly-responsive and broadband photodetection based on large-area multilayered $WS_2$ films grown by pulsed-laser deposition". Nanoscale 7, 14974-14981 (2015). 

  2. Octon, T. J., Nagareddy, V. K., Russo, S., Craciun, M. F. & Wright, C. D. "Fast High-Responsivity Few- Layer $MoTe_2$ Photodetectors". Adv. Optical Mater. 4, 1750-1754 (2016). 

  3. Yim, C. et al. "High-Performance Hybrid Electronic Devices from Layered $PtSe_2$ Films Grown at Low Temperature". ACS Nano 10, 9550-9558 (2016). 

  4. Jiao, L., Jie, W., Yang, Z., Wang, Y. & Chen, Z. "Layer-dependent photoresponse of 2D $MoS_2$ films prepared by pulsed laser deposition". J. Mater. Chem. C 7, 2522-2529 (2019). 

  5. Huang, M. et al. "Broadband Black-Phosphorus Photodetectors with High Responsivity". Adv. Mater. 28, 3481-3485 (2016). 

  6. Miao, J. et al. "Single Pixel Black Phosphorus Photodetector for Near-Infrared Imaging". Small 14, 1702082-1702088 (2018). 

  7. Jia, Z. et al. "Enhanced Photoresponse of SnSe-Nanocrystals-Decorated $WS_2$ Monolayer Phototransistor". ACS Appl. Mater. Interfaces 8, 4781-4788 (2016). 

  8. Qiao, S. et al. "A vertically layered $MoS_2$ /Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector". J. Mater. Chem. C 6, 3233-3239 (2018). 

  9. Kim, H., Patel, M., Kim, J. & Jeong, M. S. "Growth of Wafer-Scale Standing Layers of $WS_2$ for Self- Biased High-Speed UV-Visible-NIR Optoelectronic Devices". ACS Appl. Mater. Interfaces 10, 3964-3974 (2018). 

  10. Sun, M. et al. "Heterostructured graphene quantum dot / $WSe_2$ / Si photodetector with suppressed dark current and improved detectivity". Nano Research 11 (6), 3233-3243 (2018). 

  11. Nguyen, D. A. et al. "Highly Enhanced Photoresponsivity of a Monolayer $WSe_2$ Photodetector with Nitrogen-Doped Graphene Quantum Dots". ACS Appl. Mater. Interfaces 10, 10322-10329 (2018). 

  12. Yu, Y. et al. "PbS-Decorated $WS_2$ Phototransistors with Fast Response". ACS Photonics 4, 950-956 (2017). 

  13. Hu, C. et al. "Synergistic Effect of Hybrid PbS Quantum Dots / 2D- $WSe_2$ Toward High Performance and Broadband Phototransistors". Adv. Funct. Mater. 27, 1603605-1603612 (2017). 

  14. Wu, H. et al. "All-Inorganic Perovskite Quantum Dot-Monolayer $MoS_2$ Mixed-Dimensional van der Waals Heterostructure for Ultrasensitive Photodetector." Adv. Sci. 5, 1801219-1801227, (2018). 

  15. Bera, S., Gupta, D., Ray, S. K. & Sapra, S. " $MoSe_2$ - $Cu_2S$ Vertical p-n Nanoheterostructures for High-Performance Photodetectors". ACS Appl. Mater. Interfaces 11, 4074-4083, (2019) 

  16. Guo, N. et al. "Hybrid $WSe_2$ - $In_2O_3$ Phototransistor with Ultrahigh Detectivity by Efficient Suppression of Dark Currents". ACS Appl. Mater. Interfaces 9, 34489-34496 (2017). 

  17. Henning, A. et al. "Charge Separation at Mixed- Dimensional Single and Multilayer $MoS_2$ /Silicon Nanowire Heterojunctions". ACS Appl. Mater. Interfaces 10, 16760-16767 (2018). 

  18. Kim, S. J. et al. "Fabrication of high-performance flexible photodetectors based on Zn-doped $MoS_2$ /graphene hybrid fibers". J. Mater. Chem. C 5, 12354-12359 (2017). 

  19. Ye, L., Li, H., Chen, Z. & Xu, J. "Near-Infrared Photodetector Based on $MoS_2$ /Black Phosphorus Heterojunction". ACS Photonics 3, 692-699 (2016). 

  20. Long, M. et al. "Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure". Nano Lett. 16 (4), 2254-2259 (2016). 

  21. Chen, Z. A. "high performance self-driven photodetector based on a graphene/InSe/ $MoS_2$ vertical heterostructure". J. Mater. Chem. C 6, 12407-124122 (2018). 

  22. Jeong, H. et al. "Metal-Insulator-Semiconductor Diode Consisting of Two-Dimensional Nanomaterials". Nano Lett. 16, 1858-1862 (2016). 

  23. Tan, H. et al. "Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown $WS_2$ With Graphene Electrodes". ACS Nano 10 (8), 7866-7873 (2016). 

  24. Tan, H. et al. "Lateral Graphene-Contacted Vertically Stacked $WS_2$ / $MoS_2$ Hybrid Photodetectors with Large Gain". Adv. Mater. 29, 1702917-1702924 (2017). 

  25. Zheng, W. et al. "Anisotropic Growth of Nonlayered CdS on $MoS_2$ Monolayer for Functional Vertical Heterostructures". Adv. Funct. Mater. 16, 2648-2654 (2016). 

  26. Yang, T. et al. " Van der Waals epitaxial growth and optoelectronics of large-scale $WSe_2$ / $SnS_2$ vertical bilayer p-n junctions". Nat. Commun. 8, 1906-1914 (2017). 

  27. Xue, Y. et al. "Scalable Production of a Few-Layer $MoS_2$ / $WS_2$ Vertical Heterojunction Array and Its Application for Photodetectors". ACS Nano 10, 573-580 (2016). 

  28. Chen, C. et al. "Large-Scale Synthesis of a Uniform Film of Bilayer $MoS_2$ on Graphene for 2D Heterostructure Phototransistors". ACS Appl. Mater. Interfaces 8 (29), 19004-19011 (2016). 

  29. Wang, F. et al. "Tunable GaTe- $MoS_2$ van der Waals p-n Junctions with Novel Optoelectronic Performance". Nano Lett. 15, 7558-7566 (2015). 

  30. Yang, S. et al. "Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe- $MoS_2$ p-n vdW Heterostructure". ACS Appl. Mater. Interfaces 8 (4), 2533-2539 (2016). 

  31. Huang, Y. et al. "Van der Waals Coupled Organic Molecules with Monolayer $MoS_2$ for Fast Response Photodetectors with Gate-Tunable Responsivity". ACS Nano 12, 4062-4073 (2018). 

  32. Xu, H. et al. "High Detectivity and Transparent Few- Layer $MoS_2$ /Glassy-Graphene Heterostructure Photodetector". Adv. Mater. 30 (13), 1706561-1706569, (2018). 

  33. Zhang, K. et al. "Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II $MoTe_2$ / $MoS_2$ van der Waals Heterostructures". ACS Nano 10, 3852-3858 (2016). 

  34. Li, B. et al. "3D Band Diagram and Photoexcitation of 2D - 3D Semiconductor Heterojunctions". Nano Lett. 15, 5919-5925 (2015). 

  35. Kim, Y. et al. "Facile Fabrication of a Two-Dimensional TMD/Si Heterojunction Photodiode by Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition". ACS Appl. Mater. Interfaces 10, 36136-36143 (2018). 

  36. Hwang, I., Kim, J. S., Cho, S. H., Jeong, B. & Park, C. "Flexible Vertical p-n Diode Photodetectors with Thin N-type $MoSe_2$ Films Solution-Processed on Water Surfaces". ACS Appl. Mater. Interfaces 10, 34543-34552 (2018). 

  37. Geng, X. et al. "Design and construction of ultra-thin $MoSe_2$ nanosheet- based heterojunction for highspeed and low-noise photodetection". Nano Research 9, 2641-2651 (2016). 

  38. Kim, H.-S. et al. "High-performing $MoS_2$ -embedded Si photodetector". Materials Science in Semiconductor Processing 71, 35-41 (2017). 

  39. Lan, C. et al. "Zener Tunneling and Photoresponse of a $WS_2$ /Si van der Waals Heterojunction". ACS Appl. Mater. Interfaces 8, 18375-18382 (2016). 

  40. Yim, C. et al. "Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes". Nano Lett. 18, 1794-1800 (2018). 

  41. Zheng, Z. et al. "Fabrication of a high performance Zn $In_2$ S4/Si heterostructure photodetector array for weak signal detection". J. Mater. Chem. C 6, 12928-12939 (2018). 

  42. Yang, J. et al. " $MoS_2$ - InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity". ACS Appl. Mater. Interfaces 8, 8576-8582 (2016). 

  43. Pak, S. W., Chu, D., Song, D. Y., Lee, S. K. & Kim, E. K. "Enhancement of near-infrared detectability from InGaZnO thin film transistor with $MoS_2$ light absorbing layer". Nanotechnology 28, 475206 (2017). 

  44. Ma, C. et al. "Heterostructured $WS_2$ / $CH_3NH_3PbI_3$ Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity". Adv. Mater. 28 (19) 3683-3689 (2016). 

  45. Jo, S. et al. "A High-Performance $WSe_2$ / h-BN Photodetector using a Triphenylphosphine ( $PPh_3$ )-Based n-Doping Technique" Adv. Mater. 28, 4824-4831 (2016) 

  46. Xiang, D. et al. "Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus". Nature Communications 6, 6485 (2015). 

  47. Kang, D. et al. "High-Performance Transition Metal Dichalcogenide Photodetectors Enhanced by Self- Assembled Monolayer Doping". Adv. Funct. Mater. 25, 4219-4227 (2015). 

  48. Kang, D. et al. "Self-Assembled Layer (SAL)-Based Doping on Black Phosphorus (BP) Transistor and Photodetector". ACS Photonics 4, 1822-1830 (2017). 

  49. Lu, J. et al. "Hybrid Bilayer $WSe_2$ - $CH_3NH_3PbI_3$ Organolead Halide Perovskite as a High-Performance Photodetector". Angew. Chem. 128, 12124-12128 (2016). 

  50. Lee, K. H., Kim, T., Shin, H. & Kim, S. "Highly Efficient Photocurrent Generation from Nano - crystalline Graphene - Molybdenum Disulfide Lateral Interfaces". Adv. Mater. 28, 1793-1798 (2016). 

  51. Wu, W. et al. "Self-Powered Photovoltaic Photodetector Established on Lateral Monolayer $MoS_2$ - $WS_2$ Heterostructures". Nano Energy 51, 45-53 (2018). 

  52. Yao, J. & Yang, G. "Flexible and High-Performance All-2D Photodetector for Wearable Devices". Small 14, 1704524-1704531 (2018). 

  53. Pak, Y., Park, W., Mitra, S., Devi, A. A. S., Loganathan, K., Kumaresan, Y., Kim, Y., Cho, B., Jung, G.-Y., Hussain, M. M., & Roqan, I. S. "Enhanced Performance of $MoS_2$ Photodetectors by Inserting an ALD-Processed $TiO_2$ Interlayer". Small 14, 1703176-1703181 (2018). 

  54. Mandrus, D., Zhou, Z. & Xu, Y. "High-Performance $WSe_2$ Phototransistors with 2D/2D Ohmic Contacts". Nano Lett. 18, 2766-2771 (2018). 

  55. Liu, J. et al. "Pronounced Photovoltaic Response from Multi-layered $MoTe_2$ Phototransistor with Asymmetric Contact Form". Nanoscale Research Letters 12, 603-610 (2017). 

  56. Zhou, C. et al. "Self-Driven Metal-Semiconductor -Metal $WSe_2$ Photodetector with Asymmetric Contact Geometries". Adv. Funct. Mater. 28, 1802954-1802961 (2018). 

  57. Chen, J., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. "Intrinsic and extrinsic performance limits of graphene devices on $SiO_2$ ". Nature Nanotechnology 3, 206-209 (2008). 

  58. Phys, A. " $MoS_2$ nanosheet photodetectors with ultrafast response". Appl. Phys. Lett. 111, 153502 (2017). 

  59. Britnell, L. et al. "Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers". Nano Lett. 12, 1707-1710 (2012). 

  60. Britnell, L. et al. "Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures". Science 335, 947-950 (2012). 

  61. Samassekou, H. et al. "Viable route towards largearea 2D $MoS_2$ using magnetron sputtering". 2D Mater. 4, 021002 (2017). 

  62. Nazir, G. et al. "Comparison of Electrical and Photoelectrical Properties of $ReS_2$ Field-Effect Transistors on Different Dielectric Substrates". ACS Appl. Mater. Interfaces 10, 32501-32509 (2018). 

  63. Zhu, Y. et al. "High-Efficiency Monolayer Molybdenum Ditelluride Light-Emitting Diode and Photodetector". ACS Appl. Mater. Interfaces 10, 43291-43298 (2018). 

  64. Huo, N., Gupta, S. & Konstantatos, G. " $MoS_2$ -HgTe Quantum Dot Hybrid Photodetectors beyond 2 ${\mu}$ m>>. Adv. Mater. 29, 1606576-1606580 (2017). 

  65. Liu, Q. et al. "Printable Transfer-Free and Wafer- Size $MoS_2$ /Graphene van der Waals Heterostructures for High-Performance Photodetection". ACS Appl. Mater. Interfaces 9, 12728-12733 (2017). 

  66. Parzinger, E., et al. "Photocatalytic Stability of Single-and Few-Layer $MoS_2$ ". ACS Nano 9 (11), 11302-11309 (2015). 

  67. Yamamoto, M., Dutta, S., Aikawa, S., Nakaharai, S. & Wakabayashi, K. "Self-Limiting Layer-by-Layer Oxidation of Atomically Thin $WSe_2$ ". Nano Lett. 15, 2067-2073 (2015). 

  68. Ahn, S. et al. "Prevention of Transition Metal Dichalcogenide Photodegradation by Encapsulation with h?BN Layers". ACS Nano 10 (9), 8973-8979 (2016). 

  69. Cho, A., Song, M., Kang, D. & Kwon, J. "Two-Dimensional $WSe_2$ / $MoS_2$ p-n Heterojunction-Based Transparent Photovoltaic Cell and Its Performance Enhancement by Fluoropolymer Passivation". ACS Appl. Mater. Interfaces 10, 35972-35977 (2018). 

  70. Kufer, D. & Konstantatos, G. "Highly Sensitive, Encapsulated $MoS_2$ Photodetector with Gate Controllable Gain and Speed". Nano Lett. 15, 7307-7313 (2015). 

  71. Namgung, S., Shaver, J., Oh, S. & Koester, S. J. "Multimodal Photodiode and Phototransistor Device Based on Two-Dimensional Materials". ACS Nano 10 (11), 10500-10506 (2016). 

  72. Gong, F. et al. "High-Sensitivity Floating-Gate Phototransistors Based on $WS_2$ and $MoS_2$ ". Adv. Funct. Mater. 26, 6084-6090 (2016). 

  73. Wang, X. et al. "Ultrasensitive and Broadband $MoS_2$ Photodetector Driven by Ferroelectrics". Adv. Mater. 27, 6575-6581 (2015). 

  74. Wu, G., Wang, X., Wang, P., Huang, H. & Chen, Y . "Visible to short wavelength infrared $In_2$ $Se_3$ -nanoflake photodetector gated by a ferroelectric polymer." Nanotechnology 27, 364002-364008 (2016). 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로