$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고등학생들의 통합 탐구 기능 향상을 위한 인지적 스캐폴딩 도구 개발 및 적용
Development and Application of Cognitive Scaffolding Tools for Enhancing the Integrated Science Process Skills of High School Students 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.39 no.4, 2019년, pp.545 - 562  

이기영 (강원대학교) ,  허준혁 (동해광희고등학교) ,  박재용 (서울교육대학교)

초록
AI-Helper 아이콘AI-Helper

이 연구의 목적은 고등학생들의 통합 탐구 기능 향상을 위한 인지적 스캐폴딩 도구를 개발하고, 그 적용 효과를 탐색하는 것이다. 이를 위해 문헌 연구 및 선행 연구 결과를 토대로 통합 탐구 기능 교육을 위한 수업용 자료 1종과 학생들이 자신의 탐구 능력 수준에 맞추어 선택적으로 학습할 수 있는 개별 학습용 자료 2종을 포함한 인지적 스캐폴딩 도구를 개발하였다. 또한, 통합 탐구 기능에 대한 학생들의 수준을 조사하기 위한 도구로 가설-연역적 탐구 형식으로 구성된 사전, 사후 검사용 탐구 과제를 1개씩 개발하였다. 인지적 스캐폴딩 도구의 효과를 검증하기 위하여 실험군과 대조군의 사전, 사후 검사에 대해 추리 통계를 실시하였다. 또한, 인지적 스캐폴딩 도구의 적용 여부에 따른 고등학생들의 통합 탐구 능력을 Rasch 모형에 따른 Wrightmap을 산출하여 비교하였고, 통합 탐구 기능의 각 요소에 대한 학생들의 수준 변화 양상을 확인하였다. 연구 결과, 인지적 스캐폴딩 도구를 사용했던 실험군은 대조군에 비해 탐구 설계, 자료 수집 및 변환, 자료 해석, 결론 도출 등 모든 평가 요소에서 유의미하게 높은 점수를 보였다. 또한, 인지적 스캐폴딩 도구를 활용했던 학생들은 전반적으로 통합 탐구 능력이 향상되었고, 통합 탐구 기능의 각 요소에서 높은 수준으로 뚜렷하게 변화되는 양상을 보여주었다. 이러한 연구 결과는 학생들이 과학 탐구를 수행하는 과정에서 직면하는 기능적 장벽을 완화 또는 제거하기 위해 인지적 스캐폴딩 도구를 적극적으로 활용할 필요가 있음을 시사한다.

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study is to develop cognitive scaffolding tools and to explore their effects on integrated science process skills of high school students. For this purpose, we developed cognitive scaffolding tools including one kind of classroom instruction for training integrated process skills...

주제어

표/그림 (17)

참고문헌 (76)

  1. Achieve, Inc. (2013). Next generation science standards. Washing, DC: Author. 

  2. Aikenhead, G. S. (1983). Chapter 1: Science as inquiry: A desired state. In Penick, J. E.(ed.), Focus on excellence, volume 1 number 1: Science as inquiry. Washington, DC: NSTA. 

  3. Alibali, M (2006). Does visual scaffolding facilitate students' mathematics learning? Evidence from early algebra. Northern Illinois University, Faculty Development and Instructional Design Center. 

  4. American Association for the Advancement of Science [AAAS]. (1989). Science for all Americans. Washington, DC: AAAS. 

  5. American Association for the Advancement of Science [AAAS]. (1993). Benchmarks for science literacy. Washington, DC: AAAS. 

  6. Bae, Y. (2009). The application of inquiry process skills in elementary science education. The Journal of Korea Elementary Education, 19(2), 89-102. 

  7. Bean, T. W., & Patel Stevens, L. (2002). Scaffolding reflection for preservice and inservice teachers. Reflective Practice, 3(2), 205-218. 

  8. Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd Ed.). NY: Routledge. 

  9. Brookhart, S. M. (2017). How to give effective feedback to your students. Alexandria, VA: ASCD. 

  10. Biological Science Curriculum Study, 4th ed. (2009). Biology teachers' handbook. Arlington, VA: NSTA press. 

  11. Chiappetta, E. L., & Koballa, T. R. (2015). Science instruction in the middle and secondary schools: Developing fundamental knowledge and skill (Pearson eText with loose-leaf version, 8th ed.). NY: Pearson Education, Inc. 

  12. Chin, C. (2007). Classroom Interaction in Science: Teacher questioning and feedback to students' responses. International Journal of Science Education, 28(11), 1315-1346. 

  13. Cho, H., & Choi, G. (2006). Science teaching-learning and performance assessment. Seoul: Kyoyookgwahaksa. 

  14. Cho, H., & Choi, G. (2008). Theory and practices of science education (2nd ed.). Seoul: Kyoyookgwahaksa. 

  15. Chung, D., & Lee, K. (2008). Improving Effects of Students' Scientific Process Skills in the Science Instruction Reinforced Inquiry Process. Journal of Science Education, 33, 49-62. 

  16. Colburn, A. (2000). An inquiry primer, Science Scope, 23(6), 42-44. 

  17. Elena, B., & Deborah, L. (2007). Tools of the mind: The Vygotskian approach to early childhood education(2nd Ed.). Merrill: Pearson Education, Inc. 

  18. Germann, P. J., & Aram, R. J. (1996). Student performances on the science processes of recording data, analyzing data, drawing conclusions, and providing evidence. Journal of Research in Science Teaching, 33(7), 773-798. 

  19. Harlen, W. (2000). Teaching, learning and assessing science process skills. Assessment in Education, 6(1), 129-144. 

  20. Harrell, P. E., & Bailer, J. (2004). Pass the mealworms, please: Using mealworms to develop science process skills. Science Activities, 41(2), 33-36. 

  21. Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81-112. 

  22. Hong, S., & Son, Y. (2011). A case study on development and application of the explicit teaching and learning strategy for comprehension of the middle school students' basic science process skills. Journal of the Korean Association for Science Education, 31(4), 641-662. 

  23. Jumaat, N. F., & Tasir, Z. (2014). Instructional scaffolding in online learning environment: A meta-analysis. 2014 International Conference on Teaching and Learning in Computing and Engineering Proceedings, 74-77. 

  24. Keys, C., Hand, B., Prain, V., & Collins, S. (1999). Using the scientific writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36(10), 1065-1084. 

  25. Kim, S., Cha, H., & Kim, J. (2005). Development of experimental modules using everyday life materials to enhance science process skills. Journal of the Korean Association for Science Education, 25(7), 754-764. 

  26. Ko, J., & Kim, H. (2015). The development and application to program for elementary school six grade student's improvement basic inquiry skills with observation of cloud. Brain, Digital, & Learning, 5(2), 17-24. 

  27. Ko, Y., & Jeong, E. (2014). The effects of explicit instruction using teaching-learning materials for improving middle school students' science process skills -Focused on "photosynthesis" unit-. Biology Education, 42(1), 16-31. 

  28. Korea Foundation for the Advancement of Science & Creativity [KOFAC]. (2019). Developing Korean Science Education Standards for the Next Generation. 

  29. Lee, D. (2011). Free inquiry in textbook. Seoul: Hanulimkids. 

  30. Lee, D. (2012a). Basic process skills in textbook. Seoul: Hanulimkids. 

  31. Lee, D. (2012b). Integrated process skills in textbook. Seoul: Hanulimkids. 

  32. Lee, E., & Kang, S. (2012). Sub-component extraction of inquiry skills for direct teaching of inquiry skills. Journal of the Korean Association for Science Education, 32(2), 236-264. 

  33. Lee, H., Min, B., & Son, Y. (2012). Development and application of the explicit and reflective learning strategy for enhancement of the elementary school students' basic inquiry skills-Based on observation and classification-. Journal of the Korean Association for Science Education, 32(1), 95-112. 

  34. Lee, K., Lee, S., Kang, E., Kwon, G., Kim, M., Nam, G., Byeon, T., Lee, I., Lee, J., & Cho, Y. (2005). Guidelines for successful middle school science inquiry classes. Seoul National University Science Education Research Center. 

  35. Lee, K., & Park, J. (2017). Exploring a learning progression for integrated process skills in earth science inquiry. Journal of the Korean Earth Science Society, 38(3), 222-238. 

  36. Lee, J. (2009). Education?psychology?society research methodology. Gyeonggi: Kyoyookgwahaksa. 

  37. Lee, Y., & Cho, H. (2015). Scientific inquiry. Gyeonggi: Kyoyookgwahaksa. 

  38. Lenski, S. D., & Nierstheimer, S. L. (2002). Strategy instruction from a sociocognitive perspective. Reading Psychology, 23(2), 127-143. 

  39. Luft, J., Bell, R. L., & Gess-Newsome, J. (2008). Science as inquiry in the secondary setting. VA: NSTA Press. 

  40. Maeng, S., Seong, Y., & Jang, S. (2013). Present states, methodological features, and an exemplar study of the research on learning progressions. Journal of the Korean Association for Science Education, 33(1), 161-180. 

  41. Maeng, S., Lee, K., Park, Y., Lee, J., & Oh, H. (2014). Development and validation of a learning progression for astronomical systems using ordered multiple-choice items. Journal of the Korean Association for Science Education, 34(8), 703-718. 

  42. Martin-Hansen, L. (2002). Defining inquiry. The Science Teacher, 69(2), 34-37. 

  43. Maybin, J., Mercer, N., & Steirer, B. (1992). 'Scaffolding' learning in the classroom. In K. Norman (Ed.), Thinking voices: The work of the national curriculum project. London: Hodder and Stoughton for the National Curriculum Council, London. 

  44. Metcalf, S. J., Krajcik, J., & Soloway, E. (2000). Model-It: A design retrospective. In Jacobson, M. J. & Kozma, R. B. (Eds.), Innovations in science and mathematics education: Advanced design for technologies of learning. Mahwah, NJ: Erlbaum Assoc. 

  45. Michael J. (2006). Where's the evidence that active learning works? Advances in Physiology Education, 30(4), 159-167. 

  46. Ministry of Education [MOE]. (1997). 7th Science curriculum (Notification No. 1997-15 of the Ministry of Education). Ministry of Education, Seoul, Korea. 

  47. Ministry of Education [MOE]. (2015). 2015 revised science curriculum (Notification No. 2015-74 of the Ministry of Education). Ministry of Education, Seoul, Korea. 

  48. Ministry of Education [MOE]. (2018). Elementary science: Teacher's guide (Elementary school grades 3-4). Ministry of Education, Seoul, Korea. 

  49. Ministry of Education and Human Resources Development [MOEHR]. (2007). 2007 revised science curriculum(Notification No. 2007-79 of the MOEHR). Ministry of Education and Human Resources Development, Seoul, Korea. 

  50. Ministry of Education and Science Technology [MEST]. (2009). 2009 revised science curriculum(Notification No. 2009-41 of the MEST). Ministry of Education and Science Technology, Seoul, Korea. 

  51. Ministry of Education and Science Technology [MEST], Korea Foundation for the Advancement of Science & Creativity [KOFAC], & Science Education Research Institute Korea National University of Education. (2009). Free inquiry instructional materials for elementary school 3rd and 4th grade(the general). 

  52. National Research Council [NRC]. (1996). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press. 

  53. National Research Council [NRC]. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press. 

  54. NGSS Lead States (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press. 

  55. Noh, T., Lee, J., Yang, C., Kang, S., & Kang, H. (2016). Investigation of learning progression for dissolution and solution concepts. Journal of the Korean Association for Science Education, 36(2), 295-302. 

  56. Palincsar, A. S. (1998). Social constructivist perspectives on teaching and learning. Annual Review of Psychology, 49(1), 345-375. 

  57. Park, J., & Lee, K. (2012). Exploring the components and functions of scaffolding in open inquiry through factor analysis. Journal of the Korean Association for Science Education, 32(7), 1204-1221. 

  58. Park, H., Son, Y., & Hong, Y. (2018). The latent profiles of student perception of inquiry activities and teacher feedback in science classrooms: Individual and school factors and affective characteristics. Journal of Educational Evaluation, 31(3), 557-582. 

  59. Plummer, J. D. (2014). Spatial thinking as the dimension of progress in an astronomy learning progression. Studies in Science Education. 50(1), 1-45. 

  60. Prince M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3), 223-231. 

  61. Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. NY: Oxford University Press. 

  62. Rosenshine, B. & Meister, C. (1992). The use of scaffolds for teaching higher-level cognitive strategies. Educational Leadership, 49(7), 26-33. 

  63. Saye, J. W., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. ETR&D, 50(3), 77-96. 

  64. Selles-Martinez, J. (2004). International earth science olympiad: What to test and how to do so. Seoul Conference for the International Earth Science Olympiad Conference Proceedings, 136-142. 

  65. Shim, K., Park, J., Lee, K., Son, J., Moon, H., Park, J., Bae, M., So, Y., Ahn, S., Lee, S., Jeon, B., & Cho, H. (2018). Science inquiry experiment. Seoul: Visang Education. 

  66. Shin, J. (2011). Meta-analysis of the effects of lessons using a scaffolding strategy. The Journal of Elementary Education, 24(2), 25-46. 

  67. Shin, D., Shin, J., & Kwon, Y. (2006). An analysis on the processes of observation teaching and the types of observation in elementary life science classes. Journal of the Korean Society of Elementary Science Education, 25(4), 339-351. 

  68. Stone, C. A. (1998). The metaphor of scaffolding: Its utility for the field of learning disabilities. Journal of Learning Disabilities, 31(4), 344-364. 

  69. Tabak, I. (2004). Synergy: A complement to emerging patterns of distributed scaffolding. The Journal of the Learning Sciences, 13(3), 305-335. 

  70. Terry L. D., & Diane E. (2010). Learner-centered inquiry in undergraduate biology: Positive relationships with long-term student achievement. CBE-Life Sciences Education, 9(4), 462-472. 

  71. Tomlinson, C. A. (2001). How to differentiate instruction in mixed-ability classrooms (2nd Ed.). Alexandria, VA: ASCD. 

  72. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press. 

  73. Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100. 

  74. Wright, B. D. (1994). Reasonable mean-square fit value. Rasch Measurement Transactions, 8, 370. 

  75. Yang, H., & Kim, H. (2017). The Application Effect of Experimental Instruction Model based on Feedback Process in Middle School Science Class. School Science Journal, 11(2), 246-259. 

  76. Yang, I. (2010). Elementary science free inquiry. Gyeonggi: Book21 Aulbook. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로