$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Oligotrophic Media Compared with a Tryptic Soy Agar or Broth for the Recovery of Burkholderia cepacia Complex from Different Storage Temperatures and Culture Conditions 원문보기

Journal of microbiology and biotechnology, v.29 no.10, 2019년, pp.1495 - 1505  

Ahn, Youngbeom (Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration) ,  Lee, Un Jung (Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration) ,  Lee, Yong-Jin (Department of Biological Sciences, Albany State University) ,  LiPuma, John J. (Department of Pediatrics, University of Michigan) ,  Hussong, David (Eagle Analytical Services) ,  Marasa, Bernard (Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration) ,  Cerniglia, Carl E. (Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration)

Abstract AI-Helper 아이콘AI-Helper

The Burkholderia cepacia complex (BCC) is capable of remaining viable in low-nutrient environments and harsh conditions, posing a contamination risk in non-sterile pharmaceutical products as well as a challenge for detection. To develop optimal recovery methods to detect BCC, three oligotrophic medi...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Results from this study clearly demonstrate the utility of using diluted media and enriched cultures with a pre-enrichment step as a superior strategy in the compendial test method USP [60] for BCC recovery and detection [45]. Furthermore, this study provides a comprehensive data set that supports the USP inclusion of lower nutrient, resuscitative media as suggested previously [18, 20].
  • In addition, the recovery of microorganisms from distilled water samples and antiseptics increased by using a pre-enrichment medium. Results in this study provide confirmatory data for USP in support of its proposed compendial chapter for BCC detection. Results from this study clearly demonstrate the utility of using diluted media and enriched cultures with a pre-enrichment step as a superior strategy in the compendial test method USP [60] for BCC recovery and detection [45].
  • In this study, the 1/10 × TSA/B, 1/3 × R2A/B, and R2A/B is referred to as oligotrophic medium. The aim of this study was to assess the recovery of BCC using oligotrophic media as compared to the TSA or TSB at different storage temperatures in autoclaved distilled water samples as well as at different antiseptic concentrations.
  • The manuscript is dedicated to the late Mr. Walter Bond for his seminal research contributions on the recovery of Burkholderia cepacia from nebulizer fluids that stimulated the research presented in this paper as well as to the development of the USP chapter on this subject. The views presented in this article do not necessarily reflect those of the Food and Drug Administration.
본문요약 정보가 도움이 되었나요?

참고문헌 (45)

  1. DSMZ. 2019. Prokaryotic nomenclature up-to-date. Available from https://www.dsmz.de/bacterial-diversity/prokaryoticnomenclature-up-to-date/prokaryotic-nomenclature-up-to-date.html. Accessed May 17, 2019. 

  2. Peeters C, Zlosnik JEA, Spilker T, Hird TJ, LiPuma JJ, Vandamme P. 2013. Burkholderia pseudornultivorans sp nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst. Appl. Microbiol. 36: 483-489. 

  3. Ahn Y, Kim JM, Kweon O, Kim SJ, Jones RC, Woodling K, et al. 2016. Intrinsic resistance of Burkholderia cepacia complex to benzalkonium chloride. MBio. 7: e01716. 

  4. Martina P, Leguizamon M, Prieto CI, Sousa SA, Montanaro P, Draghi WO, et al. 2018. Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils. Int. J. Syst. Evol. Microbiol. 68: 14-20. 

  5. Peeters C, Meier-Kolthoff JP, Verheyde B, De Brandt E, Cooper VS, Vandamme P. 2016. Phylogenomic study of Burkholderia glathei-like organisms, proposal of 13 novel Burkholderia species and emended descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Front Microbiol. 7: 877. 

  6. Mahenthiralingam E, Baldwin A, Dowson CG. 2008. Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J. Appl. Microbiol. 104: 1539-1551. 

  7. FDA. 2017. FDA updates on 2017 Burkholderia cepacia contamination. Available from https://www.fda.gov/Drugs/DrugSafety/ucm570672.htm. Accessed May 17, 2019. 

  8. FDA. 2017. FDA advises drug manufacturers that Burkholderia cepacia complex poses a contamination risk in non-sterile, water-based drug products. Available from https://www.fda.gov/Drugs/DrugSafety/ucm559508.htm. Accessed May 17, 2019. 

  9. CDC. 2017. Multistate outbreak of Burkholderia cepacia infections associated with oral liquid docusate sodium. Available from https://www.cdc.gov/hai/outbreaks/bcepacia/. Accessed May 17, 2019. 

  10. CDC. 2017. Multistate outbreak of Burkholderia cepacia bloodstream infections associated with contaminated prefilled saline flush syringes. Available from https://www.cdc.gov/hai/outbreaks/b-cepacia-saline-flush/index.html. Accessed May 17, 2019. 

  11. CDC. 2018. Multistate outbreak of Burkholderia cepacia complex infections associated with the use of medline remedy essentials no-rinse cleaning foam. Available from https://www.cdc.gov/hai/outbreaks/b-cepacia/no-rinse.html. Accessed May 17, 2019. 

  12. Becker SL, Berger FK, Feldner SK, Karliova I, Haber M, Mellmann A, et al. 2018. Outbreak of Burkholderia cepacia complex infections associated with contaminated octenidine mouthwash solution, Germany, August to September 2018. Euro. Surveill. 23: 1800540. 

  13. Torbeck L RD, Guilfoyle DE, Friedman RL, Hussong D. 2011. Burkholderia cepacia: This decision is overdue. PDA J. Pharm. Sci. Technol. 65: 535-543. 

  14. Jimenez L. 2007. Microbial diversity in pharmaceutical product recalls and environments. PDA J. Pharm. Sci. Technol. 61: 383-399. 

  15. Robertson J, Levy A, Sagripanti JL, Inglis TJJ. 2010. The Survival of Burkholderia pseudomallei in Liquid Media. Am. J. Trop. Med. Hyg. 82: 88-94. 

  16. Kim JM, Ahn Y, LiPuma JJ, Hussong D, Cerniglia CE. 2015. Survival and susceptibility of Burkholderia cepacia complex in chlorhexidine gluconate and benzalkonium chloride. J. Ind. Microbiol. Biotechnol. 42: 905-913. 

  17. Gilligan PH, Whittier S. 1999. Burkholderia, Stenotrophomonas, Ralstonia, Brevundimonas, Comamonas, and Acidovorax, pp. 526-538. In Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds.), Manual of clinical microbiology, 7th ed. American Society for Microbiology, Washington, D.C. 

  18. Carson LA, Favero MS, Bond WW, Petersen NJ. 1973. Morphological, biochemical, and growth characteristics of Pseudomonas cepacia from distilled water. Appl. Microbiol. 25: 476-483. 

  19. Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P. 2006. Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol. 14: 277-286. 

  20. Ahn Y, Kim JM, Ahn H, Lee YJ, LiPuma J, Hussong D, et al. 2014. Evaluation of liquid and solid culture media for the recovery and enrichment of Burkholderia cenocepacia from distilled water J. Ind. Microbiol. Biotechnol. 41: 1109-1118. 

  21. Ahn Y, Kim JM, Lee YJ, LiPuma J, Hussong D, Marasa B, et al. 2017. Effects of extended storage of chlorhexidine gluconate and benzalkonium chloride solutions on the viability of Burkholderia cenocepacia. J. Microbiol. Biotechnol. 27: 2211-2220. 

  22. USP. 2016. Microbiological examination of non-sterile products: acceptance criteria for pharmaceutical preparations and substances for pharmaceutical use. Available from https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/q05c_pf_ira_33_2_2007.pdf. Accessed May 17, 2019. 

  23. USP. 2016. Microbiological examination of nonsterile products - microbial enumeration tests. Available from https://hmc.usp.org/sites/default/files/documents/HMC/GCs-Pdfs/c61.pdf. Accessed May 17, 2019. 

  24. USP. 2016. Microbiological examination of nonsterile products - tests for specified microorganisms. Available from https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/q05a_pf_ira_34_6_2008.pdf. Accessed May 17, 2019. 

  25. Vanlaere E, Coenye T, Samyn E, Van den Plas C, Govan J, De Baets F, et al. 2005. A novel strategy for the isolation and identification of environmental Burkholderia cepacia complex bacteria. FEMS Microbiol. Lett. 249: 303-307. 

  26. Vermis K, Brachkova M, Vandamme P, Nelis H. 2003. Isolation of Burkholderia cepacia complex genomovars from waters. Syst. Appl. Microbiol. 26: 595-600. 

  27. Carson LA, Tablan OC, Cusick LB, Jarvis WR, Favero MS, Bland LA. 1988. Comparative evaluation of selective media for isolation of Pseudomonas cepacia from cystic fibrosis patients and environmental sources. J. Clin. Microbiol. 26: 2096-2100. 

  28. Kawai M, Matsutera E, Kanda H, Yamaguchi N, Tani K, Nasu M. 2002. 16S ribosomal DNA-based analysis of bacterial diversity in purified water used in pharmaceutical manufacturing processes by PCR and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 68: 699-704. 

  29. Nagarkar PP, Ravetkar SD, Watve MG. 2001. Oligophilic bacteria as tools to monitor aseptic pharmaceutical production units. Appl. Environ. Microbiol. 67: 1371-1374. 

  30. Venkateswaran K, Hattori N, La Duc MT, Kern R. 2003. ATP as a biomarker of viable microorganisms in clean-room facilities. J. Microbiol. Methods. 52: 367-377. 

  31. Kulakov LA, McAlister MB, Ogden KL, Larkin MJ, O'Hanlon JF. 2002. Analysis of bacteria contaminating ultrapure water in industrial systems. Appl. Environ. Microbiol. 68: 1548-1555. 

  32. Baranyi J, Roberts TA. 1994. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23: 277-294. 

  33. Cassidy MB, Leung KT, Lee H, Trevors JT. 2000. A comparison of enumeration methods for culturable Pseudomonas fluorescens cells marked with green fluorescent protein. J. Microbiol. Methods 40: 135-145. 

  34. Jin M, Wang B. 2014. Implementing multiple comparisons on pearson chi-square test for an R $\times$ C contingency table in SAS. SAS Global Forum Proc. 1544: 1541-1546 

  35. Schaffter N, Parriaux A. 2002. Pathogenic-bacterial water contamination in mountainous catchments. Water Res. 36: 131-139. 

  36. Pumpuang A, Chantratita N, Wikraiphat C, Saiprom N, Day NPJ, Peacock SJ, et al. 2011. Survival of Burkholderia pseudomallei in distilled water for 16 years. Trans. R. Soc. Trop. Med. Hyg. 105: 598-600. 

  37. Gilbert SE, Rose LJ. 2012. Survival and persistence of nonspore-forming biothreat agents in water. Lett. Appl. Microbiol. 55: 189-194. 

  38. Moore RA, Tuanyok A, Woods DE. 2008. Survival of Burkholderia pseudomallei in water. BMC Res. Notes 1: 11. 

  39. Moore JE, Nagano Y, Millar BC, McCalmont M, Elborn JS, Rendall J, et al. 2007. Environmental persistence of Pseudomonas aeruginosa and Burkholderia multivorans in sea water: preliminary evidence of a viable but non-culturable state. Br. J. Biomed. Sci. 64: 129-131. 

  40. Tong S, Yang S, Lu Z, He W. 1996. Laboratory investigation of ecological factors influencing the environmental presence of Burkholderia pseudomallei. Microbiol. Immunol. 40: 451-453. 

  41. ASTM. 2012. ASTM F1094 - 87, Standard test methods for microbiological monitoring of water used for processing electron and microelectronic devices by direct pressure tap sampling valve and by the presterilized plastic bag method. Available from www.astm.org. Accessed May 17, 2019. 

  42. Hagedorn C, Gould WD, Bardinelli TR, Gustavson DR. 1987. A selective medium for enumeration and recovery of Pseudomonas cepacia biotypes from soil. Appl. Environ. Microbiol. 53: 2265-2268. 

  43. Peeters C, Depoorter E, Praet J, Vandamme P. 2016. Extensive cultivation of soil and water samples yields various pathogens in patients with cystic fibrosis but not Burkholderia multivorans. J. Cyst. Fibros. 15: 769-775. 

  44. Mitchell AJ, Wimpenny JW. 1997. The effects of agar concentration on the growth and morphology of submerged colonies of motile and non-motile bacteria. J. Appl. Microbiol. 83: 76-84. 

  45. Pharmawebinars. 2019. New proposed general chapter USP Microbiological examination of nonsterile products - tests for Burkholderia cepacia complex. Available from https://www.pharmawebinars.com/usp-60-tests-for-burkholderiacepacia-complex. Accessed May 17, 2019. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로