$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

흰다리새우(Litopenaeus vannamei) 사료 내 동애등에 유충과 갈색거저리 유충의 어분대체효과
Replacing Fish Meal with Black Soldier Fly Larvae and Mealworm Larvae in Diets for Pacific White Shrimp Litopenaeus vannamei 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.53 no.6, 2020년, pp.900 - 908  

신재형 (제주대학교 해양생명과학과) ,  조세희 (제주대학교 해양생명과학과) ,  고대현 (제주대학교 해양생명과학과) ,  이경준 (제주대학교 해양과학연구소)

Abstract AI-Helper 아이콘AI-Helper

This study was conducted to partially replace fish meal with black soldier fly (BSF) larvae or mealworm (MW) larvae in the diet for Pacific white shrimp Litopenaeus vannamei. A tuna by-product meal (27%) was used as the protein source in a control (Con) diet, which was replaced with 20%, 40%, or 60%...

주제어

표/그림 (5)

참고문헌 (48)

  1. Akiyama DM, Dominy WG and Lawrence AL. 1992. Penaeid shrimp nutrition. In: Marine shrimp culture principles and practice. Fast AW and Lester LJ, 1st ed, Elsevier Science Publishers, New York, NY, U.S.A., 535-568. 

  2. AOAC (Association of Official Analytical Chemists). 2005. Official methods of analysis. Association of Official Analytical Chemists, Arlington, VA, U.S.A. https://doi.org/10.1002/0471740039.vec0284. 

  3. Barroso FG, de Haro C, Sanchez-Muros MJ, Venegas E, Martinez-Sanchez A and Perez-Banon C. 2014. The potential of various insect species for use as food for fish. Aquaculture 422, 193-201. https://doi.org/10.1016/j.aquaculture.2013.12.024. 

  4. Belghit I, Waagbo R, Lock EJ and Liland NS. 2019. Insectbased diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon. Aquac Nutr 25, 343-357. https://doi.org/10.1111/anu.12860. 

  5. Choi IH, Kim JM, Kim NJ, Kim JD, Park C, Park JH and Chung TH. 2018. Replacing fish meal by mealworm Tenebrio molitor on the growth performance and immunologic responses of white shrimp Litopenaeus vannamei. Acta Sci 40, e39077. https://doi.org/10.4025/actascianimsci.v40i1.39077. 

  6. Choi SC, Ingale SL, Kim JS, Park YK, Kwon IK and Chae BJ. 2013. An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers. Br Poult Sci 6, 738-746. https://doi.org/10.1080/00071668.2013.838746. 

  7. Cummins Jr, VC, Rawles SD, Thompson KR, Velasquez A, Kobayashi Y, Hager J and Webster CD. 2017. Evaluation of black soldier fly Hermetia illucens larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp Litopenaeus vannamei. Aquaculture 473, 337-344. https://doi.org/10.1016/j.aquaculture.2017.02.022. 

  8. Dayrit FM. 2015. The properties of lauric acid and their significance in coconut oil. J Am Oil Chem Soc 92, 1-15. https://doi.org/10.1007/s11746-014-2562-7. 

  9. FAO (Food and Agriculture Organization of the United Nations). 2018. The state of world fisheries and aquaculture 2018. Meeting the sustainable development goals. FAO Report, 227. 

  10. Garces R and Mancha M. 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal Biochem 211, 139-143. https://doi.org/10.1006/abio.1993.1244. 

  11. Garlid KD, Orosz DE, Modriansky M, Vassanelli S and Jezek P. 1996. On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem 271, 2615-2620. https://doi.org/10.1074/jbc.271.5.2615. 

  12. Gatlin III DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW and Overturf K. 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res 38, 551-579. https://doi.org/10.1111/j.1365-2109.2007.01704.x. 

  13. He Y, Galagarza OA, Wang H, Taylor ZW, Ferguson CS, Ogejo JA and Wiersema BD. 2020. Protein-rich product recovered from brewer's spent grain can partially replace fishmeal in diets of Pacific white shrimp, Litopenaeus vannamei. Aquac Res 51, 3284-3296. https://doi.org/10.1111/are.14664. 

  14. Henry M, Gasco L, Piccolo G and Fountoulaki E. 2015. Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Technol 203, 1-22. https://doi.org/10.1016/j.anifeedsci.2015.03.001. 

  15. Hernandez-Lopez J, Gollas-Galvan T and Vargas-Albores F. 1996. Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 113, 61-66. https://doi.org/10.1016/0742-8413(95)02033-0. 

  16. Hwang JS, Kang BR, Kim SR, Yun EY, Park KH, Jeon JP and Kim IS. 2008. Molecular characterization of a defensin-like peptide from larvae of a beetle, Protaetia brevitarsis. Int J Indust Entomol 17, 131-135. 

  17. Jozefiak A and Engberg RM. 2017. Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J Ani Feed Sci 26, 87-99. https://doi.org/10.22358/jafs/69998/2017. 

  18. Khempaka S, Chitsatchapong C and Molee W. 2011. Effect of chitin and protein constituents in shrimp head meal on growth performance, nutrient digestibility, intestinal microbial populations, volatile fatty acids, and ammonia production in broilers. J Appl Poult Res 20, 1-11. https://doi.org/10.3382/japr.2010-00162. 

  19. KOSIS (Korea Statistical Information Service). 2020. Survey on the status of aquaculture. Retrieved from http://kostat.go.kr/portal/korea/kor_nw/1/1/index.board?bmoderead&aSeq380812 on Dec 8, 2020. 

  20. Kroeckel S, Harjes AG, Roth I, Katz H, Wuertz S, Susenbeth A and Schulz C. 2012. When a turbot catches a fly: Evaluation of a pre-pupae meal of the black soldier fly Hermetia illucens as fish meal substitute-growth performance and chitin degradation in juvenile turbot Psetta mxima. Aquaculture 364, 345-352. https://doi.org/10.1016/j.aquaculture.2012.08.041. 

  21. Kumar P, Sahu NP, Saharan N, Reddy AK and Kumar S. 2006. Effect of dietary source and level of chitin on growth and survival of post-larvae Macrobrachium rosenbergii. J Appl Ichthyol 22, 363-368. https://doi.org/10.1111/j.1439-0426.2006.00757.x. 

  22. Lee KH, Hong SY and Oh JE. 1998. Synthesis and structure-function study about tenecin 1, an antibacterial protein from larvae of Tenebrio molitor. FEBS letters 439, 41-45. https://doi.org/10.1016/s0014-5793(98)01333-7. 

  23. Li S, Ji H, Zhang B, Tian J, Zhou J and Yu H. 2016. Influence of black soldier fly Hermetia illucens larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 465, 43-52. https://doi.org/10.1016/j.aquaculture.2016.08.020. 

  24. Lock ER, Arsiwalla T and Waagbo R. 2016. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon Salmo salar posts molt. Aquac Nutr 22, 1202-1213. https://doi.org/10.1111/anu.12343. 

  25. MAFRA (Ministry of Agriculture, Food and Rural Affairs). 2019. The investigation of insects industry 2018. Retrieved from https://www.mafra.go.kr/bbs/mafra/65/320711/artclView.do on Dec 08, 2020. 

  26. Magalhaes R, Sanchez-Lopez A, Leal RS, Martinez-Llorens S, Oliva-Teles A and Peres H. 2017. Black soldier fly Hermetia illucens pre-pupae meal as a fish meal replacement in diets for European seabass Dicentrarchus labrax. Aquaculture 476, 79-85. https://doi.org/10.1016/j.aquaculture.2017.04.021. 

  27. McLean E, Barrows FT, Craig SR, Alfrey K and Tran L. 2020. Complete replacement of fishmeal by soybean and poultry meals in Pacific whiteleg shrimp feeds: Growth and tolerance to EMS/AHPND and WSSV challenge. Aquaculture 527, 735383. https://doi.org/10.1016/j.aquaculture.2020.735383. 

  28. Motte C, Rios A, Lefebvre T, Do H, Henry M and Jintasataporn O. 2019. Replacing fish meal with defatted insect meal (Yellow Mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp Litopenaeus vannamei. Animals 9, 258. https://doi.org/10.3390/ani9050258. 

  29. Nicolas P. 2009. Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276, 6483-6496. https://doi.org/10.1111/j.1742-4658.2009.07359.x. 

  30. Nogales-Merida S, Gobbi P, Jozefiak D, Mazurkiewicz J, Dudek K, Rawski M and Jozefiak A. 2019. Insect meals in fish nutrition. Rev Aquac 11, 1080-1103. https://doi.org/10.1111/raq.12281. 

  31. Pakravan S, Akbarzadeh A, Sajjadi MM, Hajimoradloo A and Noori F. 2017. Partial and total replacement of fish meal by marine microalga Spirulina platensis in the diet of Pacific white shrimp Litopenaeus vannamei: Growth, digestive enzyme activities, fatty acid composition and responses to ammonia and hypoxia stress. Aquac Res 48, 5576-5586. https://doi.org/10.1111/are.13379. 

  32. Panini RL, Freitas LEL, Guimaraes AM, Rios C, da Silva MFO, Vieira FN and Amboni RD. 2017. Potential use of mealworms as an alternative protein source for Pacific white shrimp: digestibility and performance. Aquaculture 473, 115-120. https://doi.org/10.1016/j.aquaculture.2017.02.008. 

  33. Powell A and Rowley AF. 2007. The effect of dietary chitin supplementation on the survival and immune reactivity of the shore crab, Carcinus maenas. Comp Biochem Physiol A Mol Integr Physiol 147, 122-128. https://doi.org/10.1016/j.cbpa.2006.12.027. 

  34. Rahimnejad S, Hu S, Song K, Wang L, Lu K, Wu R and Zhang C. 2019. Replacement of fish meal with defatted silkworm (Bombyx mori L.) pupae meal in diets for Pacific white shrimp Litopenaeus vannamei. Aquaculture 510, 150-159. https://doi.org/10.1016/j.aquaculture.2019.05.054. 

  35. Ravi C, Jeyashree A and Devi KR. 2011. Antimicrobial peptides from insects: an overview. Res Biotechnol 2, 1-7. 

  36. Richard L, Blanc PP, Rigolet V, Kaushik SJ and Geurden I. 2010. Maintenance and growth requirements for nitrogen, lysine and methionine and their utilisation efficiencies in juvenile black tiger shrimp, Penaeus monodon, using a factorial approach. Br J Nutr 103, 984-995. https://doi.org/10.1017/s0007114509992844. 

  37. Rosen H. 1957. A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys 67, 10-15. https://doi.org/10.1016/0003-9861(57)90241-2. 

  38. Schlievert PM, Deringer JR, Kim MH, Projan SJ and Novick RP. 1992. Effect of glycerol monolaurate on bacterial growth and toxin production. Antimicrob Agents Chemother 36, 626-631. https://doi.org/10.1128/aac.36.3.626. 

  39. Sealey WM, Gaylord TG, Barrows FT, Tomberlin JK, McGuire MA, Ross C and St-Hilaire S. 2011. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J World Aquac Soc 42, 34-45. https://doi.org/10.1111/j.1749-7345.2010.00441.x. 

  40. Shiau SY and Yu YP. 1998. Chitin but not chitosan supplementation enhances growth of grass shrimp, Penaeus monodon. J Nutr 128, 908-912. https://doi.org/10.1093/jn/128.5.908. 

  41. Song YS, Kim MW, Moon C, Seo DJ, Han YS, Jo YH and Jung WJ. 2018. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor. Entomol Res 48, 227-233. https://doi.org/10.1111/1748-5967.12304. 

  42. Strickland JDH and Parsons TR. 1972. Determination of ammonia In: A Practical Handbook of Seawater Analysis, 2nd eds. Fishery Research Board of Canada. Alger Press Ltd., Ottawa, Canada, 87. 

  43. Stubbs RJ and Harbron CG. 1996. Covert manipulation of the ratio of medium-to long-chain triglycerides in isoenergetically dense diets: effect on food intake in ad libitum feeding men. International journal of obesity and related metabolic disorders. Int J Obes 20, 435-444. 

  44. Tzuc JT, Escalante DR, Herrera RR, Cortes GG and Ortiz MLA. 2014. Microbiota from Litopenaeus vannamei: digestive tract microbial community of Pacific white shrimp (Litopenaeus vannamei). Springerplus 3, 280. https://doi.org/10.1186/2193-1801-3-280. 

  45. Van Huis A, van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G and van tome P. 2013. Edible Insects. Future Prospects for Food and Feed Security. FAO report, 171. 

  46. Wu S, Zhang F, Huang Z, Liu H, Xie C, Zhang J and Qiao S. 2012. Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides 2, 225-230. https://doi.org/10.1016/j.peptides.2012.03.030. 

  47. Zaki MA, Salem M, El-S Gaber MM and Nour AM. 2015. Effect of chitosan supplemented diet on survival, growth, feed utiliza-tion, body composition and histology of sea bass Dicentrarchus labrax. World J Engin Technol 3, 38-47. https://doi.org/10.4236/wjet.2015.34c005. 

  48. Zhang SP, Li JF, Wu XC, Zhong WJ, Xian JA, Liao SA and Wang AL. 2013. Effects of different dietary lipid level on the growth, survival and immune-relating genes expression in Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 34, 1131-1138. https://doi.org/10.1016/j.fsi.2013.01.016. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로