$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

상기생(Loranthus parasiticus) 추출물의 탄수화물 소화 효소 및 식후 고혈당 저해 효과
Inhibitory Effects of Loranthus Parasiticus Extract on Carbohydrate Digestive Enzymes and Postprandial Hyperglycemia 원문보기

생명과학회지 = Journal of life science, v.30 no.1, 2020년, pp.18 - 25  

박민정 (동서대학교 식품영양학과) ,  박재은 (부산대학교 식품영양학과) ,  한지숙 (부산대학교 식품영양학과)

초록
AI-Helper 아이콘AI-Helper

상기생(Loranthus parasiticus)은 뽕나무에 기생하는 겨우살이로 전세계에 널리 분포되어 있으며, 수 세기 동안 전통 의학의 성분으로 사용되어 왔고, 최근까지 항암, 항산화, 항비만, 항염증 효과 등이 연구되었으나, 탄수화물 효소나 식후 혈당 수치에 미치는 영향에 관한 연구는 부족한 실정이다. 본 연구는 Loranthus parasiticus 추출물 (LPE)이 탄수화물 분해 효소(α-glucosidase, α-amylase) 활성 억제와 streptozotocin (STZ)으로 유도된 당뇨병 마우스에서 식후 고혈당 완화 효과를 조사하였다. 그 결과 LPE는 농도에 비례하여 α-glucosidase와 α-amylase 활성을 억제 하였고, 각각의 IC50 값으로 0.121±0.007 및 0.157±0.004 mg/ml을 나타내어 양성 대조군인 acabose 보다 유의하게 강한 억제 효과가 있음을 보여주었다(p<0.05). 또한 STZ으로 유도된 당뇨병 마우스에서는 대조군의 높은 혈당과 달리 LPE 첨가군에서는 혈당이 유의하게 감소하였다(p<0.05). 따라서, 이들 결과는 LPE가 α-glucosidase와 α-amylase 억제 효과로 식후 고혈당을 감소시킬 수 있는 천연 항고혈당 식품으로 사용 가능성을 시사한다.

Abstract AI-Helper 아이콘AI-Helper

This study was designed to investigate whether Loranthus parasiticus extract (LPE) could inhibit the activities of carbohydrate digestive enzymes and alleviate postprandial hyperglycemia in diabetic mice. Lyophilized L. parasiticus was extracted with 80% ethanol and concentrated. The inhibitory effe...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • This study investigated the inhibitory effects of the natural product, LPE, against α-amylase and α-glucosidase to uncover potential as a postprandial hyperglycemic inhibitor.

대상 데이터

  • Four-week-old male mice (ICR, Orient, Inc., Seoul, Korea) were individually housed in a temperature control room (25-30°C) with 45-55% relative humidity.

데이터처리

  • Differences were assessed with one-way ANOVA followed by Duncan's multi-range test (p<0.05).
  • Values with different letters (a-c) are significantly different at each time (p<0.05) as analyzed by Duncan’s multiple range test.
  • Values with different letters (a-d) are significantly different at p<0.05 as analyzed by Duncan’s multiple range test.
  • a-cValues with different alphabets are significantly different at p<0.05, as analyzed by Duncan's multiple-range test.

이론/모형

  • Blood glucose was measured using a glucometer (Roche Diagnostics GmbH, Mannheim, Germany). The areas under the curve (AUC) were calculated using the trapezoidal rule [17].
본문요약 정보가 도움이 되었나요?

참고문헌 (39)

  1. Abd-Alla, H. I., Shalaby, N. M., Hamed, M. A., El-Rigal, N. S., Al-Ghamdi, S. N. and Bouajila, J. 2016. Phytochemical composition, protective and therapeutic effect on gastric ulcer and ${\alpha}$ -amylase inhibitory activity of Achillea biebersteinii Afan. Arch. Pharm. Res. 39, 10-20. 

  2. Ali, H., Houghton, P. J. and Soumyanath, A. 2006. Alpha-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J. Ethnopharmacol. 107, 449-455. 

  3. Basha, R. H. and Sankaranarayanan, C. 2016. ${\beta}$ -Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats. Chem. Biol. Interact. 5, 50-58. 

  4. Ceriello, A. 2005. Postprandial hyperglycemia and diabetes complications: is it time to treat?. Diabetes 54, 1-7. 

  5. Cui, H., Lu, T., Wang, M., Zou, X., Zhang, Y., Yang, X., Dong, Y. and Zhou, H. 2019. Flavonoids from Morus alba L. leaves: optimization of extraction by response surface methodology and comprehensive evaluation of their antioxidant, antimicrobial, and inhibition of ${\alpha}$ -amylase activities through analytical hierarchy process. Molecules 24, E2398. 

  6. Edem, D. O. and Usoh, I. F. 2009. Biochemical changes in wistar rats on oral doses of mistletoe (Loranthus micranthus). Am. J. Pharmacol. Toxicol. 4, 94-97. 

  7. Haller, H. 1998. The clinical importance of postprandial glucose. Diabetes Res. Clin. Pract. 40, 43-49. 

  8. Hanefeld, M. 1998. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J. Diabetes Complications 12, 228-237. 

  9. Herath, H. M. M., Weerarathna, T. P., Fonseka, C. L. and Vidanagamage, A. S. 2017. Targeting postprandial blood sugar over fasting blood sugar: A clinic based comparative study. Diabetes Metab. Syndr. 11, 133-136. 

  10. Hou, W., Li, Y., Zhang, Q., Wei, X., Peng, A., Chen, L. and Wei, Y. 2009. Triterpene acids isolated from Lagerstroemia speciosaleaves as ${\alpha}$ -glucosidase inhibitors. Phytother. Res. 23, 614-618. 

  11. Huang, Q., Chai, W. M., Ma, Z. Y., Ou-Yang, C. and Peng, Y. Y. 2019. Inhibitionof ${\alpha}$ -glucosidase activity and non-enzymatic glycation by tannicacid: Inhibitory activity and molecular mechanism. Int. J. Biol. Macromol. 141, 358-368. 

  12. Hwang, K., Kim, J., Choi, Y., Choj, K. and Park, K. 2011. One of the Korean mistletoe species, Loranthus yadoriki Sieb. exhibited potent inhibitory activities against monoamine oxidases. Planta Med. 77, DOI:10.1055/s-0031-1282451. 

  13. Iwalokun, B. A., Oyenuga, A. O., Saibu, G. M., Ayorinde, J., Lagos, Y. and Polytechnic, L. S. 2011. Analyses of cytotoxic and genotoxic potentials of Loranthus micranthus using the Allium cepa test. J. Biol. Sci. 3, 459-467. 

  14. Jo, S. H., Cho, C. Y., Lee, J. Y., Ha, K. S., Kwon, Y. I. and Apostolidis, E. 2016. In vitro and in vivo reduction of post-prandial blood glucose levels by ethyl alcohol and water Zingiber mioga extracts through the inhibition of carbohydrate hydrolyzing enzymes. BMC Complement Altern. Med. 16, 111-117. 

  15. Khathi, A., Serumula, M. R., Myburg, R. B., Van Heerden, F. R. and Musabayane, C. T. 2013. Effects of Syzygium aromaticum-derived triterpenes on postprandial blood glucose in streptozotocin-induced diabetic rats following carbohydrate challenge. PLoS One 8, e81632. 

  16. Kim, K. W., Yang, S. H. and Kim, J. B. 2014. Protein fractions from korean mistletoe (Viscum Album coloratum) extract induce insulin secretion from pancreatic beta cells. Evid. Based Complement. Alternat. Med. 2014, 703624. 

  17. Kim, J. S. 2004. Effect of Rhemanniae Radix on the hyperglycemic mice induced with streptozotocin. J. Kor. Soc. Food Sci. Nutr. 33, 1133-1138. 

  18. Li, Y.Q., Zhou, F. C., Gao, F., Bian, J. S. and Shan, F. 2009. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of ${\alpha}$ -glucosidase. J. Agric. Food Chem. 57, 11463-11468. 

  19. Moghadamtousi, S. Z., Kamarudin, M. N. A., Chan, C. K., Goh, B. H. and Kadir, H. A. 2014. Phytochemistry and biology of Loranthus parasiticus Merr, a commonly used herbal medicine. Am. J. Chin. Med. 42, 23-35. 

  20. Mothana, R. A. A., Al-Said, M. S., Al-Rehaily, A. J., Thabet, T. M., Awad, N. A., Lalk, M. and Lindequist, U. 2012. Anti-inflammatory, antinociceptive, antipyretic and antioxidant activities and phenolic constituents from Loranthus regularis Steud. ex Sprague. Food Chem. 130, 344-349. 

  21. Mukhopadhyay, P. and Prajapat, A. K. 2015. Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers - a review. RSC Adv. 5, 97547-97562. 

  22. Nalysnyk, L., Hernandez-Medina, M. and Krishnarajah, G. 2010. Glycemic variability and complications in patients with diabetes mellitus: evidence from a systematic review of the literature. Diabetes Obes. Metab. 12, 288-298. 

  23. Nazaruk, J. and Borzym-Kluczyk, M. 2015. The roleof triterpenes in the management of diabetes mellitus and its complications. Phytochem. Rev. 14, 675-690. 

  24. Nicolle, E., Souard, F., Faure, P. and Boumendjel, A. 2011. Flavonoids as promising lead compounds in type 2 diabetes mellitus: molecules of interest and structure-activity relationship. Curr. Med. Chem. 18, 2661-2672. 

  25. Park, M. H., Ju, J. W., Park, M. J. and Han, J. S. 2013. Daidzein inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol. 712, 48-52. 

  26. Peng, X., Zhang, G., Liao, Y. and Gong, D. 2016. Inhibitory kinetics and mechanism of kaempferol on ${\alpha}$ -glucosidase. Food Chem. 190, 207-215. 

  27. Poovitha, S. and Parani, M. 2016. In vitro and in vivo ${\alpha}$ - amylase and ${\alpha}$ -glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement Altern. Med. 16, 185. 

  28. Priscilla, D. H., Roy, D., Suresh, A., Kumar, V. and Thirumurugan, K. 2014. Naringenin inhibits alpha-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem. Biol. Interact. 210, 77-85. 

  29. Saito, N., Sakai, H., Suzuki, S., Sekihara, H. and Yajima, Y. 1998. Effect of an ${\alpha}$ -glucosidase inhibitor (voglibose), in combination with sulphonylureas, on glycaemic control in type 2 diabetes patients. J. Int. Med. Res. 26, 219-232. 

  30. Seaquist, E. R. 2014. Addressing the burden of diabetes. JAMA. 311, 2267-2268. 

  31. Selvaraj, G., Kaliamurthi, S. and Thirugnanasambandam, R. 2015. Influence of Rhizophora apiculata Blume extracts on ${\alpha}$ -glucosidase: enzyme kinetics and molecular docking studies. Biocatal. Agric. Biotechnol. 4, 653-660. 

  32. Tadera, K., Minami, Y., Takamatsu, K. and Matsuoka, T. 2007. Inhibition of ${\alpha}$ -glucosidase and ${\alpha}$ -amylase by flavonoids. J. Nutr. Sci. Vitaminol. 52, 149-153. 

  33. Thilagam, E., Parimaladevi, B., Kumarappan, C. and Mandal, S. C. 2013. ${\alpha}$ -glucosidase and ${\alpha}$ -amylase inhibitory activity of Senna surattensis. J. Acupunct. Meridian Stud. 6, 24-30. 

  34. Tucci, S. A., Boyland, E. J. and Halford, J. C. 2010. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents. Diabetes Metab. Syndr. Obes. 3, 125-143. 

  35. Watanabe, J., Kawabata, J., Kurihara, H. and Niki, R. 1997. Isolation and identification of ${\alpha}$ -glucosidase inhibitors from tochucha (Eucommia ulmoides). Biosci. Biotechnol. Biochem. 61, 177-178. 

  36. Zhang, B. W., Li, X., Sun, W. L., Xing, Y., Xiu, Z. L., Zhuang, C. L. and Dong, Y. S. 2017. Dietary flavonoids and acarbose synergistically inhibit alpha-glucosidase and lower postprandial blood glucose. J. Agric. Food Chem. 65, 8319-8330. 

  37. Zhang, B. W., Xing, Y., Wen, C., Yu, X. X., Sun, W. L., Xiu, Z. L. and Dong, Y. S. 2017. Pentacyclic triterpenes as ${\alpha}$ -glucosidase and ${\alpha}$ -amylase inhibitors: structure-activity relationships and the synergism with acarbose. Bioorg. Med. Chem. Lett. 27, 5065-5070. 

  38. Zheng, J., He, J., Ji, B., Li, Y. and Zhang, X. 2007. Antihyperglycemic activity of Prunella vulgaris L. in streptozotocin-induced diabetic mice. Asia. Pac. J. Clin. Nutr. 16, 427-431. 

  39. Zorofchian-Moghadamtousi, S., Hajrezaei, M., Abdul Kadir, H. and Zandi, K. 2013. Loranthus micranthus Linn.: biological activities and phytochemistry. Evid. Based Complement. Alternat. Med. 2013, 273712. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로