$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Facile in situ Formation of CuO/ZnO p-n Heterojunction for Improved H2S-sensing Applications 원문보기

Journal of sensor science and technology = 센서학회지, v.29 no.3, 2020년, pp.156 - 161  

Shanmugasundaram, Arunkumar (Graduate School of Mechanical Engineering, Chonnam National University) ,  Kim, Dong-Su (Graduate School of Mechanical Engineering, Chonnam National University) ,  Hou, Tian Feng (Graduate School of Mechanical Engineering, Chonnam National University) ,  Lee, Dong Weon (Graduate School of Mechanical Engineering, Chonnam National University)

Abstract AI-Helper 아이콘AI-Helper

In this study, hierarchical mesoporous CuO spheres, ZnO flowers, and heterojunction CuO/ZnO nanostructures were fabricated via a facile hydrothermal method. The as-prepared materials were characterized in detail using various analytical methods such as powder X-ray diffraction, micro Raman spectrosc...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The H2S-sensing characteristics of the sensors fabricated based on ZnO flowers, CuO spheres, and CuO/ZnO heterostructure were investigated at different operating temperatures (30 °C < Ts < 250 °C) and gas concentrations (5 ppm < Gc < 500 ppm).

대상 데이터

  • Copper nitrate trihydrate (Cu(NO3)2.3H2O), zinc nitrate hexahydrate (Zn(NO3)2.6H2O), and ethanolamine (NH2CH2CH2OH) were purchased from Sigma-Aldrich. All the chemicals were analytical reagent (AR) grade and used without further purification.
본문요약 정보가 도움이 되었나요?

참고문헌 (22)

  1. A. Shanmugasundaram, N. D. Chinh, Y.-J. Jeong, T. F. Hou, D.-S. Kim, D. Kim, Y. B. Kim, and D.-W. Lee, "Hierarchical nanohybrids of B- and N-codoped graphene/mesoporous NiO nanodisks: an exciting new material for selective sensing of H2S at near ambient temperature", J. Mater. Chem. A, Vol. 7, 9263-9278, 2019. 

  2. S. K. Ganapathi, M. Kaur, R. Singh, V. Singh, A. K. Debnath, K. P. Muthe, and S. C. Gadkari. "Anomalous Sensing Response of NiO Nanoparticulate Films towards $H_2S$ ", ACS App. Nano Mater., Vol. 2, No. 10, pp. 6726-6737, 2019. 

  3. D. Zhang, Z. Wu, and X. Zong, "Flexible and highly sensitive $H_2S$ gas sensor based on in-situ polymerized $SnO_2$ /rGO/PANI ternary nanocomposite with application in halitosis diagnosis". Sens. Actuator B, Vol. 289, No. 15, pp. 32-41, 2019. 

  4. G. K. Naik, and Y. T. Yu, "Synthesis of Au@ $TiO_2$ Coreshell Nanoparticle-decorated rGO Nanocomposite and its $NO_2$ Sensing Properties", J. Sens. Sci. Technol., Vol. 28 No. 4, pp. 225-230, 2019. 

  5. S. Y. Yi, Y. G. Song, G. S. Kim, and C.-Y. Kang, "In-decorated NiO Nanoigloos Gas Sensor with Morphological Evolution for Ethanol Sensors", J. Sens. Sci. Technol., Vol. 28 No. 4, pp. 231-235, 2019. 

  6. A. Shanmugasundaram, P. Basak, L. Satyanarayana, and S. V. Manorama, "Hierarchical SnO/ $SnO_2$ nanocomposites: Formation of in situ p-n junctions and enhanced $H_2$ sensing", Sens. Actuators B, Vol. 185, No. pp. 265-273, 2013. 

  7. Z. Li,, N. Wang, Z. Lin, J. Wang, W. Liu, K. Sun, Y. Q. Fu, and Z. Wang, "Room-Temperature High-Performance $H_2S$ Sensor Based on Porous CuO Nanosheets Prepared by Hydrothermal Method", ACS App. Mater. Interfaces, Vol. 8 No. 32, pp. 20962-20968, 2016. 

  8. S. Arunkumar, T. Hou, Y. B. Kim, B. Choi, S. H. Park, S. Jung and D. W. Lee, "Au Decorated ZnO Hierarchical Architectures: Facile Synthesis, Tunable Morphology and Enhanced CO Detection at Room Temperature", Sens. Actuators B, Vol. 243, pp. 990-1001, 2017. 

  9. A. Shanmugasundaram, B. Ramireddy, P. Basak, S. V. Manorama, and S. Srinath, "Hierarchical $In(OH)_3$ as a Precursor to Mesoporous $In_2O_3$ Nanocubes: A Facile Synthesis Route, Mechanism of Self-Assembly, and Enhanced Sensing Response toward Hydrogen", J. Phys. Chem. C, Vol. 118, No. 13. pp. 6909-6921, 2014. 

  10. A. Shanmugasundaram, V. Gundimeda, T. F. Hou, and D. W. Lee, "Realizing synergy between $In_2O_3$ nanocubes and nitrogen-doped reduced graphene Oxide: An excellent nanocomposite for the selective and sensitive detection of CO at ambient temperatures", ACS Appl. Mater. Interfaces, Vol. 9, No. 37, pp. 31728-31740, 2017. 

  11. A. Shanmugasundaram, P. Basak, S. V. Manorama , B. Krishna, and S. Srinath,, "Hierarchical Mesoporous $In_2O_3$ with Enhanced CO Sensing and Photocatalytic Performance: Distinct Morphologies of $In(OH)_3$ via Self Assembly Coupled in Situ Solid-Solid Transformation", ACS App. Mater. Interfaces, Vol. 7, No. 14, pp. 7679-7689, 2015. 

  12. S. Sonia, P. Sureshkumar, N. D. Jayram, Y. Masuda, D. Mangalaraj, and C. Lee, "Superhydrophobic and $H_2S$ gas sensing properties of CuO nanostructured thin films through a successive ionic layered adsorption reaction process", RSC Adv., Vol. 6, pp. 24290-24298, 2016. 

  13. P. Rai, J. W. Yoon, H. M. Jeong, S. J. Hwang, C. H. Kwak, and J. H. Lee, Design of Highly Sensitive and Selective Au@NiO Yolk-Shell Nanoreactors for Gas Sensor Applications, Nanoscale, Vol. 6, pp. 8292-8299, 2014. 

  14. G. J. Sun, H. Kheel, J. K. Lee, S. Choi, S. Lee, and C. Lee, " $H_2S$ gas sensing properties of $Fe_2O_3$ nanoparticle-decorated NiO nanoplate sensors", Surf. Coat. Technol., Vol. 307, pp. 1088-1095, 2016. 

  15. A. Shanmugasundaram, R. Boppella, Y. J. Jeong, J. Park, Y. B. Kim, B. Choi, S. H. Park, S. Jung, and D. W. Lee, "Facile In-Situ Formation of RGO/ZnO Nanocomposite: Photocatalytic Remediation of Organic Pollutants under Solar Illumination", Mater. Chem. Phys., Vol. 218, pp. 218-228, 2018. 

  16. Y. Zhai, Y. Ji, G. Wang, Y. Zhu, H. Liu, Z. Zhong, and F. Su, "Controllable wet synthesis of multicomponent copperbased catalysts for Rochow reaction", RSC Adv., Vol. 5, pp. 73011-73019, 2015. 

  17. S. Masudy-Panah, R.S. Moakhar, C. S. Chua, H. R. Tan, T. I. Wong, D. Chi, and G. K. Dalapati, "Nanocrystal Engineering of Sputter-Grown CuO Photocathode for Visible- Light-Driven Electrochemical Water Splitting", ACS Appl. Mater. Interfaces, Vol. 8, No. 2, pp. 1206-1213, 2016. 

  18. Q. Li, Q. Wei, L. Xie, C. Chen, C. Lu, F. Y. Su, and P. Zhou, "Layered NiO/Reduced Graphene Oxide Composites by Heterogeneous Assembly with Enhanced Performance as High-Performance Asymmetric Supercapacitor Cathode", RSC Adv., Vol. 6, pp. 46548-46557, 2016. 

  19. Z. Song, Z. Wei, B. Wang, Z. Luo, S. Xu, W. Zhang, H. Yu, M. Li, Z. Huang, J. Zang, F. Yi, and H. Liu, "Sensitive Room-Temperature $H_2S$ Gas Sensors Employing SnO2 Quantum Wire/Reduced Graphene Oxide Nanocomposites", Chem. Mater., Vol. 28, pp. 1205-1212, 2016. 

  20. C. V. G. Reddy, and S.V. Manorama, "Room Temperature Hydrogen Sensor Based on SnO2:La2O3", J. Electrochem. Soc., Vol. 147, pp. 390-393, 2000. 

  21. S. Arunkumar, P. Basak, L. Satyanarayana, and S. Manorama, "One-pot Hydrothermal Synthesis of SnO and $SnO_2$ Nanostructures: Enhanced H2 Sensing Attributed to in-situ p-n Junctions", 14th Int. Meet. on Chem. Sens., pp. 372-375, Nuremberg, Germany, 2012. 

  22. R. Boppella, P. Manjula, S. Arunkumar, and S. V Manorama, "Advances in synthesis of nanostructured metal oxides for chemical sensors", Chem. Sens., Vol. 4, pp. 19(1)-19(20), 2014. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로