$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

간편법을 이용한 액상화 평가 기준에 대한 고찰
Overview on Standards for Liquefaction Triggering Evaluation using the Simplified Method 원문보기

한국지진공학회논문집 = Journal of the Earthquake Engineering Society of Korea, v.24 no.5, 2020년, pp.197 - 209  

김연준 (한국과학기술원 건설및환경공학과) ,  고길완 (한국과학기술원 건설및환경공학과) ,  (한국과학기술원 건설및환경공학과) ,  김병민 (울산과학기술원 도시환경공학과) ,  김동수 (한국과학기술원 건설및환경공학과)

Abstract AI-Helper 아이콘AI-Helper

Evidence of liquefaction during the 2017 Pohang earthquake has highlighted the urgent need to evaluate the current seismic design standard for liquefaction in Korea, particularly the liquefaction triggering standard. With the simplified method, which is the most popular method for evaluating liquefa...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
지반 액상화란? 지반 액상화는 지반에 반복하중을 가할 시 지반이 강성과 전단 강도를 상실하여 액체처럼 거동하는 현상이다. 지진 시 지반 액상화는 1964년 니가타 지진(규모 7.
지반 액상화를 평가하는 과정은 어떻게 분류되는가? 지반 액상화를 평가하는 과정은 액상화 민감도(Susceptibility), 유발(Triggering), 그리고 결과(Consequence)로 분류된다.
민감도 평가는 액상화를 판단할 때 어떠한 기준으로 나뉘어 수행되는가? 민감도 평가의 목적은 액상화에 취약한 지반을 선제적으로 판단하는 것이다. 이는 지질학적 기준(Geological criteria)과 지반분류에 따른 기준(Compositional criteria)으로 나누어 수행된다. 지질학적 기준은 지층의 형성 시기를 나타낸다.
질의응답 정보가 도움이 되었나요?

참고문헌 (65)

  1. Seed HB, Idriss IM. Simplified procedure for evaluating soil liquefaction potential. J. of the Soil Mechanics and Foundation Devision. 1971;97(9):1249-1273. 

  2. Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Ii KHS. Liquefaction resistance of soils : Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering. 2001;127(10):817-833. 

  3. Kayen RE, Moss RE, Thompson EM, Seed RB, Cetin KO, Der Kiureghian A, Tokimatsu K. Shear-Wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering. 2013;139(3);407-419. 

  4. Andrus RD, Stokoe KH, Hsein Juang C. Guide for shear-wavebased liquefaction potential evaluation. Earthquake Spectra. 2004;20(2);285-308. 

  5. Park DS. Liquefaction evaluation procedure using SPT. Magazine of the Korean Geotechnical Society. 2014;30(6):8-22. 

  6. Seo MW, Sun CG, Oh MH. LPI-based Assessment of liquefaction potential on the west coastal region of Korea. EESK J. Earthquake Eng. 2009;13(4):1-13. 

  7. Saeed-ullah JM, Park DH, Kim HS, Park KC. Cyclic simple shear test based design liquefaction resistance curve of granular soil. Journal of Korean Geotechnical Society. 2016;32(6):49-59. 

  8. Baek WH, Choi JS, Ahn JK. Liquefaction hazard map based on in pohang under based on earthquake scenarios. EESK J. Earthquake Eng. 2018;22(3):219-222. 

  9. Iwasaki T, Tatsuoka F, Tokida KI, Yasuda SA. A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. In Proceedings 2nd International Conference on Microzonation Safer Construction Research and Application. 1978;2:885-896. 

  10. Ahn JK, Baek WH, Choi JS, Kwak DY. Investigation of Pohang earthquake liquefaction using 1d effective-stress site response analysis. Journal of Korean Geotechnical Society. 2018;34(8):37-49. 

  11. Yoo BS, Bong TH, Kim SR. Evaluation Methods of cyclic shear stress ratio for the assessment of liquefaction in Korea. Journal of Korean Geotechnical Society. 2019;35(6):5-15. 

  12. Park SS, Nong Z, Choi SG, Moon HD. Liquefaction resistance of Pohang sand. Journal of the Korean Geotechnical Society. 2018;34(9):5-17. 

  13. Bong TH, Kim SR, Yoo BS. Evaluation of estimation and variability of fines content in Pohang for CPT-based liquefaction assessment. Journal of the Korean Geotechnical Society. 2019 Mar;35(3):37-46. 

  14. Song SW, Kim HS, Cho WJ. Liquefaction assessment variations with regard to the cyclic resistance ratio estimation methods. Journal of the Korean Geo-Environmental Society, 2020;21(1):13-19 

  15. Jang YE, Seo HW, Kim BM, Han JT, Park DH. Selection of ground motions for the assessment of liquefaction potential for South Korea. EESK J. Earthquake Eng. 2020;24(2):111-119. 

  16. New Zealand Geotechnical Society INC. Earthquake Geotechincial Engineering. Earthquake geotechnical engineering modulue 3 - liquefaction hazards. Ministery of Buisness Innovation and Employment. c2006. 

  17. Marsh ML, Buckle IG, Kavazanjian E. LRFD seismic analysis and deisgn of bridges (Reference manual). FHWA NHI-15-004. c2014. 

  18. JRA. 5 Seismic Deisgn Guide specification for highway bridges, the commentary. Japan road association. c2012 

  19. Martin G, Lew M, Arulmoli K, Baez J, Blake T, Earnest J, Gharib F, Goldhammer J, Hsu D, Kupferman S, O'Tousa J, Real C, Reeder W, Simantob A, Youd T. Recommended procedures for implementation of DMG special publication 117 guidelines for analyzing and mitigating liquefaction hazard in California. Los Angeles, USA : The Southern California Earthquake Center. c1999. 

  20. FEMA. NEHRP Recommended seismic provisions for new buildings and other structures. FEMA P-750. Federal Emergency Management Agency. Washington, D.C. c2009. 

  21. Eurocode 8 : Design of Stuructures for Earthquake Resistance. Part5. Foundations, Retaining Structures, Geotechnical Aspect. CEM, Brussels. c2004 

  22. Ministry of Land, Infrastructure and Transport (MLIT). Technical standards and commentaries for port and harbour facilities in Japan. Japan Port and Harbour Association. c2009. 

  23. Ministry of Land, Infrastructure and Transport (MOLIT). Guidelines for evaluating and improving earthquake resistance of existing facilities (Foudation and ground) Ministry of Land, Infrastructure and Transport, Korea. c2020. 

  24. Youd TL, Hoose SN. Liquefaction susceptibility and geologic setting. In Proceedings of 6th World Conference on Earthquake Engineering. Prentice-Hall, Englewood Cliffs, NJ. 1977;3:2189-2197. 

  25. Youd TL. Perkins DM. Mapping of liquefaction induced ground failure potential. Journal of Geotechnical Engineering Division. 1978;104(4):433-446. 

  26. Youd TL. Liquefaction mechanisms and induced ground failure. International Handbook on Earthquake and Engineering Seismology. Academic, New York, Part B. 2003;Chap. 70:1159-1173. 

  27. Boulanger RW, Idriss IM. Liquefaction susceptibility criteria for silts and clays. Journal of Geotechnical and Geoenvironmental Engineering. 2006;132(11):1413-1426. 

  28. Bray JD, Sancio RB. Assessment of the liquefaction susceptibility of fine-grained soils. Journal of Geotechnical and Geoenvironmental Engineering. 2006;132(9):1165-1177. 

  29. Wang WS. Some findings in soil liquefaction. Beijing : Water Conservancy and Hydroeletric Power Scientific Research Institute. c1979. p.55-63. 

  30. Cetin KO, Seed RB, Der Kiureghian A, Tokimatsu K, Harder Jr LF, Kayen RE, and Moss RE. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering. 2004;130(12):1314-1340. 

  31. Idriss IM, Boulanger RW. Soil liquefaction during earthquakes. California : Earthquake Engineering Research Institute. c2008. 

  32. Boulanger RW, Idriss IM. CPT and SPT based liquefaction triggering procedures. California : Center for Geotechnical Modeling Department of Civil and Environmental Engineering University of California Davis. c2014. 

  33. Cetin KO, Seed RB, Kayen RE, Moss RE, Bilge HT, Ilgac M, Chowdhury K. SPT-based probabilistic and deterministic assessment of seismic soil liquefaction triggering hazard. Soil Dynamics and Earthquake Engineering. 2018;115:698-709. 

  34. Moss RE, Seed RB, Kayen RE, Stewart JP, Cetin KO, CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering. 2006;132(8):1032-1051. 

  35. Robertson PK, Wride CE. Cyclic liquefaction and its evaluation based on the SPT and CPT. Utah : National Center for Earthquake Engineering Research. c1997. p.41-88. 

  36. Robinson K, Cubrinovski M, Bradley BA. Sensitivity of predicted liquefaction induced lateral displacements from the 2010 Darfield and 2011 Christchurch earthquakes. Wellington : University of Canterbury. c2013. 

  37. Seed HB. Design problems in soil liquefaction. Journal of Geotechnical Engineering. 1987;113(8):827-845. 

  38. Iai S, Tsuchida H, Koizumi K. A liquefaction criterion based on field performances around seismograph stations. Soils and Foundations. 1989;29(2):52-68. 

  39. Iai S, Koizumi K, Tsuchida H. A new criterion for assessing liquefaction potential using grain size accumulation curve and N-value. Tokyo : Report of the Port and Harbour Research Institute. c1986. p.125-234. 

  40. Bae SJ, Kim MR, Lee HJ, Kim BM. Characteristics of the Gyeongju Earthquake Ground Motions: Comparison with Prediction Models. Korean Society of Hazard Mitigation. 2018;18(1):57-67. 

  41. Transportation Research Board (TRB). TRB workshop on new approaches to liquefaction analysis. Publ. No. FHWA-RD-99-165, Federal Highway Administration, Washington, D.C. (on CD-ROM). c1999. 

  42. Liao SS, Whitman RV. Overburden correction factors for SPT in sand. Journal of Geotechnical engineering. 1986;112(3);373-377. 

  43. Kishida T, Boulanger RW, Abrahamson NA, Driller MW, Wehling TM. Seismic response of levees in Sacramento-San Joaquin Delta. Earthquake Spectra. 2009;25(3);557-582. 

  44. Kavazanjian E, Andrade JE, Arulmoli K, Atwater BF, Christian JT, Green R. State of the art and practice in the assessment of earthquake-induced soil liquefaction and its Consequences. Washington DC: The National Academies Press. c2016. 350p. 

  45. Seed HB, Idriss IM, Arango I. Evaluation of liquefaction potential using field performance Data. Journal of Geotechnical Engineering. 1983;109(3):458-542. 

  46. Hynes ME, Olsen RS. Influence of confining stress on liquefaction resistance. Rotterdam : NIST SPECIAL PUBLICATION. c1999. 

  47. Boulanger RW. High overburden stress effects in liquefaction analyses. Journal of Geotechnical and Geoenvironmental Engineering. 2003;129(12);1071-1082. 

  48. Ladd RS. Specimen preparation and liquefaction of sand. Journal of Geotechnical and Geoenvironmental Engineering. 1974;100(GT10):1180-1184. 

  49. Ladd RS. Specimen preparation and cyclic stability of sands. Journal of Geotechnical and Geoenvironmental Engineering. 1977;103(GT6):535-547. 

  50. Mulilis JP. The effects of method of sample preparation on the cyclic stress-strain behavior of sands. Technical Report EERC 75/18, California : University of California at Berkeley. c1975. 

  51. Mulilis JP, Arulanandan K, Nitchell JK, Chan CK, Seed BH, Effects of sample preparation and sand liquefaction. Journal of the Geotechnical Engineering Division. 1977;103(GT2):99-108. 

  52. Tatsuoka F, Zhou S, Sato, Shibuya S. Method of evaluating liquefaction potential and its application. Tokyo : Ministry of Education of Japan. c1990. 

  53. Robertson PK, Cabal KI. Cone penetration testing for geotechnical engineering. California : Gregg Drill-ing and Testing Inc. c2012. 

  54. Idriss IM, Boulanger RW. SPT-based liquefaction triggering procedures. California : Center for Geotechnical Modeling Department of Civil and Environmental Engineering University of California. c2010. 

  55. Idriss IM, Boulanger RW. Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering. 2006;26(2-4):130-151. 

  56. Robertson PK. Soil classification using CPT. Canadian Geotechnical Journal. 1990;(1):151-158 

  57. Seed HB, Tokimatsu K, Harder LF, Chung RM. Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering. 1985;111(12);1425-1445. 

  58. Van Ballegooy S, Malan PJ, Lacrosse V, Jacka ME, Cubrinovski M, Bray JD, O'Rourke TD, rawford SAC, Cowan H. Assessment of liquefaction-induced land damage for residential Christchurch. Earthquake Spectra. 2014;30(1):31-55. 

  59. Green RA, Cubrinovski M, Cox B, Wood C, Wotherspoon L, Bradley B, Maurer B. Select liquefaction case histories from the 2010-2011 canterbury earthquake sequence. Earthquake Spectra. 2014;30(1):131-153. 

  60. Tokimatsu K, Katsumata K. Liquefaction-induced damage to buildings in Urayasu city during the 2011 Tohoku Pacific earthquake. German : In Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake. c2012. p.665-674. 

  61. Cox BR, Boulanger RW, Tokimatsu K, Wood CM, Abe A, Ashford S, Kishida T. Liquefaction at strong motion stations and in Urayasu City during the 2011 Tohoku-Oki earthquake. Earthquake Spectra. 2013 Mar ;29(1);55-80. 

  62. Douglas BJ, Olsen RS, Martin GR. Evaluation of the cone penetrometer test for SPT liquefaction assessment. California : Fugro, Inc. c1981. 

  63. Shibata T, Teparaksa W. Evaluation of liquefaction potentials of soils using cone penetration tests. Soils and Foundations. 1988;28(2):49-60. 

  64. Stark TD, Olson SM, Long JH. Differential movement at the embankment/structure interface-mitigation and rehabilitation. Urbana : Illinois Transportation Research Center. c1995. 

  65. Suzuki Y, Tokimatsu K, Moss RE, Seed RB, Kayen RE. CPT-based liquefaction field case histories from the 1995 Hyogoken-Nambu (Kobe) earthquake. California : The Pacific Earthquake Engineering Research Center's (PEER). c2003. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로