최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기터널과 지하공간: 한국암반공학회지 = Tunnel and underground space, v.30 no.5, 2020년, pp.462 - 472
Rock classification is fundamental discipline of exploring geological and geotechnical features in a site, which, however, may not be easy works because of high diversity of rock shape and color according to its origin, geological history and so on. With the great success of convolutional neural net...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
Anderson, Don L., 1996, Petrology: The Study of Igneous, Sedimentary and Metamorphic Rocks, American Scientist, 84, 398+.
Andrew, Ng., 2019, Machine Learning course.
Baykan, N.A. and Yilmaz N., 2010, Mineral identification using color spaces and artificial neural networks, Computers and Geosciences, 36, 91-97.
Chatterjee, S., 2013, Vision-based rock-type classification of limestone using multi-class support vector machine, Appl. Intell, 39, 14-27.
Forman, G. and Scholz, M., 2010, Apples-to-apples in cross-validation studies: Pitfalls in classifier performance measurement, ACM Sigkdd Explor. Newsl, 12, 49-57.
Guo, C. and Liu, Y., 2014, Recognition of rock images based on multiple color spaces, Sci. Technol. Eng, 14, 247-251 and 255.
He, K., Zhang, X., Ren, S., and Sun, J., 2015, Deep residual learning for image recognition, arXiv preprint arXiv: 1512.03385.
Jiang, Y., 2017, Detecting Geological Structures in Seismic Volumes Using Deep Convolutional Neural Networks, Master Thesis.
LeCun, Y., Bottou, L., Orr, G.B. and Muller, K.R., 1998, Efficient BackProp. In: Orr G.B., Muller KR. (eds) Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science, 1524.
Patel, A.K., Chatterjee, S., Gorai, A.K., 2017, Development of online machine vision system using support vector regression (SVR) algorithm for grade prediction of iron ores, 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA). IEEE, 149-152.
Patel, A.K., Gorai, A.K., Chatterjee, S., 2016, Development of Machine Vision-based System for Iron Ore Grade Prediction using Gaussian Process Regression (GPR), Pattern Recognit. Inf. Process, 45-48.
Pires de Lima, R., Bonar, A., Coronado, D.D., Marfurt, K., and Nicholson, C, 2019, Deep convolutional neural networks as a geological image classification tool, The Sedimentary Record, 17(2), 4-9.
Ran, X., Xue, L., Zhang, Y., Liu, Z., Sang, X. and He, X., 2019, Rock Classification from Field Image Patches Analyzed Using a Deep Convolutional Neural Network, Mathematics, 7, 755.
Shu, L., McIsaac, K., Osinski, G.R. and Francis, R., 2017, Unsupervised feature learning for autonomous rock image classification, Computers and Geosciences, 106, 10-17.
Wang, C., Li, Y., Fan, G., Chen, F., and Wang, W., 2018, Quick recognition of rock images for mobile applications, J. Eng. Sci. Technol. Rev, 11, 111-117.
Zhang, Y., Li, M. and Han, S., 2018, Automatic identification and classification in lithology based on deep learning in rock images, Acta Petrol. Sin, 34, 333-342.
Zhang, Y., Li, M., Han, S., Ren, Q., and Shi, J., 2019, Intelligent Identification for Rock-Mineral Microscopic Images Using Ensemble Machine Learning Algorithms, Sensors (Basel, Switzerland), 19(18), 3914.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.