$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

암반공학분야에 적용된 인공지능 알고리즘 분석
An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering 원문보기

터널과 지하공간: 한국암반공학회지 = Tunnel and underground space, v.31 no.1, 2021년, pp.25 - 40  

김양균 (노르트론)

초록
AI-Helper 아이콘AI-Helper

4차 산업혁명 시대의 도래에 따라 암반공학분야에서도 인공지능을 활용한 연구가 점차 증가하고 있다. 본 논문에서는 인공지능에 대한 이해와 그 활용도를 더욱 증진시키기 위하여, 암반공학기술의 주된 적용대상인 터널, 발파, 광산과 관련된 최근의 국내외 연구 중 인공지능이 활용된 논문들에서 그 알고리즘의 종류와 적용방법을 분석하였다. 터널에서는 암반분류, TBM굴진율 및 막장전방 지질 예측, 발파에서는 암반의 파쇄도 및 비산거리, 광산에서는 폐광의 침하가능성 예측을 위해 주로 활용되고 있으며, 기계학습의 다양한 알고리즘인공신경망이 압도적으로 많이 활용되고 있는 것으로 나타났다. 연구결과의 정확도와 신뢰성 제고를 위해 사용하고자 하는 인공지능 알고리즘에 대한 정확하고 상세한 이해가 필수적이며, 현재는 접근이나 분석이 난해한 암반공학 분야의 다양한 문제해결을 위해 기계학습뿐 아니라 CNN 또는 RNN과 같은 딥러닝을 활용한 연구 아이디어들이 점차 증가될 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

As the era of Industry 4.0 arrives, the researches using artificial intelligence in the field of rock engineering as well have increased. For a better understanding and availability of AI, this paper analyzed the types of algorithms and how to apply them to the research papers where AI is applied am...

주제어

표/그림 (11)

참고문헌 (54)

  1. Armaghani, D.J., M. Koopialipoor, A. Marto and S. Yagiz, 2019, Application of several optimization techniques for estimating TBM advance rate in granitic rocks, Journal of Rock Mechanics and Geotechnical Engineering 11(4), 779-789. https://doi.org/10.1016/j.jrmge.2019.01.002. 

  2. Butler A.G. and J.A. Franklin, 1990, An expert system for rock mass classification, Static and Dynamic considerations in Rock Engineering, Balkema, Rotterdam, 73-80. 

  3. Cachim, P. and A. Bezuijen, 2019, Modelling the Torque with Artificial Neural Networks on a Tunnel Boring Machine. KSCE J Civ Eng 23, 4529-4537. https://doi.org/10.1007/s12205-019-0302-0. 

  4. CERIK (Construction & Economy Research Institute of Korea), 2019, Survey on Smart Technology Applications of Korean Construction Companies and Strategies for Activation, Report. 

  5. Chen, H., C. Xiao, Z. Yao, H. Jiang, T. Zhang and Y. Guan, 2019, Prediction of TBM Tunneling Parameters through an LSTM Neural Network," 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 702-707. doi: 10.1109/ROBIO49542.2019.8961809. 

  6. Chen, J., T. Yang, D. Zhang, H. Huang and Y. Tian, 2021, Deep learning based classification of rock structure of tunnel face, Geoscience Frontiers 12, 395-404. 

  7. Committee on the fourth industrial revolution, 2019, Recommendations to the government for the fourth industrial revolution. 

  8. Das, A., S. Sinha and S. Ganguly, 2019, Development of a blast-induced vibration prediction model using an artificial neural network. Journal of the Southern African Institute of Mining and Metallurgy, 119(2), 187-200. https://dx.doi.org/10.17159/2411-9717/2019/v119n2a11. 

  9. Dong L.J., X.B. Li and K. Peng, 2013, Prediction of rockburst classification using Random Forest, Transactions of Nonferrous Metals Society of China 23(2), 472-477, https://doi.org/10.1016/S1003-6326(13)62487-5. 

  10. Fan, G., F. Chen, D. Chen, Y. Li and Y. Dong, 2020, A Deep Learning Model for Quick and Accurate Rock Recognition with Smartphones, Mobile Information Systems, Article ID 7462524, 14. 2020. https://doi.org/10.1155/2020/7462524. 

  11. Feng, G., G. Xia, B. Chen, Y. Xiao and R. Zhou, 2019, A Method for Rockburst Prediction in the Deep Tunnels of Hydropower Stations Based on the Monitored Microseismicity and an Optimized Probabilistic Neural Network Model. Sustainability 11, 3212. https://doi.org/10.3390/su11113212. 

  12. Ghasemi, E., H. Amini, M. Ataei and R. Khalokakaei, 2014, Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation. Arab J Geosci 7, 193-202. https://doi.org/10.1007/s12517-012-0703-6. 

  13. Hasegawa, N., S. Hasegawa, T. Kitaoka and H. Ohtsu, 2019, Applicability of Neural Network in Rock Classification of Mountain Tunnel, Materials Transactions, 60(5), 758-764. 

  14. Hejmanowski, R., A.A. Malinowska and W.T. Witkowski, 2016, Use of the Artificial Neural Networks for Modelling of Surface Subsidence Caused by Dehydration of Rock Mass. 16th international congress for mine surveying, Brisbane, Australia, 12-16. 

  15. Hochreiter, S. and J. Schmidhuber, 1997, Long Short-term Memory, Neural Computation 9(8), 1735-1780. 

  16. Houdt, G.V., C. Mosquera and G. Napoles, 2020, A review on the long short-term memory model. Artificial Intelligence Review 53, 5929-5955. https://doi.org/10.1007/s10462-020-09838-1. 

  17. Hudson, J.A., 1992, Rock Engineering Systems: Theory and Practice; Ellise Horwood: Chichester, UK. 

  18. Jang, M.H., T. Ha and K.H. Choi, 2019, A Study on Mechanical RMR Classification Using Artificial Neural Networks and Robust Design, J. Korean Soc. Miner. Energy Resour. Eng. 56(6), 654-664. https://doi.org/10.32390/ksmer.2019.56.6.654. 

  19. Jung, J.H., H. Chung, Y.S. Kwon and I.M. Lee, 2019, An ANN to Predict Ground Condition ahead of Tunnel Face using TBM Operational Data. KSCE J Civ Eng 23, 3200-3206. https://doi.org/10.1007/s12205-019-1460-9. 

  20. Kim, H., L. Cho and K.S. Kim, 2019, Rock Classification Prediction in Tunnel Excavation Using CNN. Journal of the Korean geotechnical society 35(9), 37-45. https://doi.org/10.7843/KGS.2019.35.9.37. 

  21. Kim, Y. and S.S. Lee, 2020, Application of Artificial Neural Networks in Assessing Mining Subsidence Risk. Applied Sciences 10(4), 1302. https://doi.org/10.3390/app10041302. 

  22. Koukoutas, S.P. and A.I. Sofianos, 2015, Settlements Due to Single and Twin Tube Urban EPB Shield Tunnelling. Geotech Geol Eng 33, 487-510. https://doi.org/10.1007/s10706-014-9835-7. 

  23. Lee, C.W. and H.K. Moon, 1994, Development of an Artificial Neural Network - Expert System for Preliminary Design of Tunnel in Rock Masses, Geotechnical Engineering 10(3), 79-96. 

  24. Lee, J.S., S.K. Lee, D.W. Kim, S.J. Hong and S.I. Yang, 2018, Trends on Object Detection Techniques Based on Deep Learning, ETRI, Electronics and Telecommunications Trends 33(4), 23-32. 

  25. Li, J., P. Li, D. Guo, X. Li and Z. Chen, 2021, Advanced prediction of tunnel boring machine performance based on big data, Geoscience Frontiers 12, 331-338. 

  26. Li, N., R. Jimenez and X. Feng, 2017, The Influence of Bayesian Networks Structure on Rock Burst Hazard Prediction with Incomplete Data, Procedia Engineering 191, 206-214. https://doi.org/10.1016/j.proeng.2017.05.173. 

  27. Liu, B., R. Wang, G. Zhao, X. Guo,Y. Wang, J. Li and S. Wang, 2020, Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm, Tunnelling and Underground Space Technology 95, 103103. https://doi.org/10.1016/j.tust.2019.103103. 

  28. Lu, X., M. Hasanipanah, K. Brindhadevi, H.B. Amnieh and S. Khalafi, 2020, ORELM: A Novel Machine Learning Approach for Prediction of Flyrock in Mine Blasting. Nat Resour Res 29, 641-654. https://doi.org/10.1007/s11053-019-09532-2. 

  29. McCarth, J., 2007, What is Artificial intelligence, Stanford University. Computer Sience Department (Download from http://jmc.stanford.edu/articles/whatisai/whatisai.pdf). 

  30. Mitchell, T.M., 1997, Machine Learning, McGraw Hill. 

  31. Monjezi, M., H. Amiri, A. Farrokhi and K. Goshtasbi, 2010, Prediction of Rock Fragmentation Due to Blasting in Sarcheshmeh Copper Mine Using Artificial Neural Networks. Geotech Geol Eng 28, 423-430. https://doi.org/10.1007/s10706-010-9302-z. 

  32. Moor, J., 2006, The Dartmouth college artificial intelligence conference: The next fifty years, American Association for Artificial lntelligence, Al Magazine 27(4), 87-91. 

  33. Morgenroth, J., U.T. Khan and M.A. Perras, 2019, An Overview of Opportunities for Machine Learning Methods in Underground Rock Engineering Design, Geosciences 9(12), 504. 

  34. Oge, I.F., 2018, Regression Analysis and Neural Network Fitting of Rock Mass Classification Systems, Journal of Science and Engineering 20(59), 354-368. 

  35. Oh, H.J., M. Syifa, C.W. Lee and S. Lee, 2019, Land Subsidence Susceptibility Mapping Using Bayesian, Functional, and Meta-Ensemble Machine Learning Models. Applied Sciences 9(6), 1248. https://doi.org/10.3390/app9061248. 

  36. Parida, A. and M.K. Mishra, 2015, Blast Vibration Analysis by Different Predictor Approaches-A Comparison, Procedia Earth and Planetary Science 11, 337-345. https://doi.org/10.1016/j.proeps.2015.06.070. 

  37. Pham, C. and H.S. Shin, 2020, A Feasibility Study on Application of a Deep Convolutional Neural Network for Automatic Rock Type Classification. Tunnel and Underground space 30(5), 462-472. 

  38. Pham, H.V., F. Yuji and K. Kamei, 2011, Hybrid Artificial Neural Networks for TBM performance prediction in complex underground conditions, IEEE/SICE International Symposium on System Integration (SII), Kyoto, 1149-1154. doi: 10.1109/SII.2011.6147611. 

  39. Ran, X., L. Xue, Y. Zhang, Z. Liu, X. Sang and J. He, 2019, Rock Classification from Field Image Patches Analyzed Using a Deep Convolutional Neural Network. Mathematics 7, 755. https://doi.org/10.3390/math7080755. 

  40. Ren, Q., G. Wang and M. Li, 2019, Prediction of Rock Compressive Strength Using Machine Learning Algorithms Based on Spectrum Analysis of Geological Hammer. Geotech Geol Eng 37, 475-489. https://doi.org/10.1007/s10706-018-0624-6 

  41. Rosales-Huamani, J.A., R.S. Perez-Alvarado, U., Rojas-Villanueva and J. L. Castillo-Sequera, 2020, Design of a Predictive Model of Rock Breakage by Blasting Using Artificial Neural Networks, Symmetry 12(9), 1405. 

  42. Salimi, A., C. Moormann, T.N. Singh and P. Jain, 2015, TBM Performance Prediction in Rock Tunneling Using Various Artificial Intelligence Algorithms, 11th Iranian and 2nd Regional Tunneling Conference, Tehran, Iran. 

  43. Secretariat of committee on the fourth industrial revolution, 2020, Trend of policy on global AI. 

  44. Sklavounos, P. and M. Sakellariou, 1995, Intelligent classification of rock masses, Transactions on Information and Communications Technologies 8. 

  45. Specht, D.F., 1990, Probabilistic Neural Networks, Neural Networks 3, 109-118. 

  46. Spencer B.F., V. Hoskerea and Y. Narazaki, 2019, Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring, Engineering 5(2), 199-222. 

  47. Sudakov, O., E. Burnaev and D. Koroteev, 2019, Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks, Computers & Geosciences 127, 91-98. https://doi.org/10.1016/j.cageo.2019.02.002. 

  48. Xu, H., J. Zhou, P.G. Asteris, D.J. Armaghani and M.M. Tahir, 2019, Supervised Machine Learning Techniques to the Prediction of Tunnel Boring Machine Penetration Rate. Appl. Sci. 3715. https://doi.org/10.3390/app9183715. 

  49. Xue, Y., Z. Li, D. Qiu, L. Zhang, Y. Zhao, X. Zhang and B. Zhou, 2019, Classification model for surrounding rock based on the PCA-ideal point method: an engineering application, Bulletin of Engineering Geology and the Environment 78, 3627-3635. 

  50. Yang, H.S. and J.C. Kim, 1999, Rock Mass Rating for Korean Tunnels Using Artificial Neural Network, J. of Korean Society for Rock Mechanics, Tunnel & Underground 9(3), 214-220. 

  51. You, K.H. and S.W. Jeon, 2013, A study on the fast prediction of the fragmentation zone using artificial neural, network when a blasting occurs around a tunnel. J. of Korean Tunn undergr Sp Assoc., 15(2), 81-95. https://doi.org/10.9711/KTAJ.2013.15.2.081. 

  52. Zhao, H. and B. Chen, 2020, Data-Driven Model for Rockburst Prediction", Mathematical Problems in Engineering, Article ID 5735496, 14. https://doi.org/10.1155/2020/5735496. 

  53. Zhao, J., M. Shi, G. Hu, X. Song, C. Zhang, D. Tao and W. Wu, 2019, A Data-Driven Framework for Tunnel Geological-Type Prediction Based on TBM Operating Data, IEEE Access 7, 66703-66713. doi: 10.1109/ACCESS.2019.2917756. 

  54. Zhou, J., B.Y. Bejarbaneh, D.J. Armaghani and M.M. Tahir, 2020, Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques. Bull Eng Geol Environ 79, 2069-2084. https://doi.org/10.1007/s10064-019-01626-8. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로