$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

인천항 하역장비 대기오염물질 배출량 산정 연구
An Study on Estimating Cargo Handling Equipment Emission in the Port of Incheon 원문보기

한국항만경제학회지 = Journal of Korea Port Economic Association, v.36 no.3, 2020년, pp.21 - 38  

조정정 (인천대학교 동북아물류대학원) ,  범태황 (인천대학교 동북아물류대학원) ,  이향숙 (인천대학교 동북아물류대학원)

초록
AI-Helper 아이콘AI-Helper

최근들어 항만도시에서의 대기오염이 심각한 문제로 대두되고 있다. 그러나 항만의 하역기계에서 배출되는 온실가스는 선박, 트럭 등 타 수단에 비해 상대적으로 주목받지 못하였다. 본 연구에서는 인천항에서 디젤엔진으로 가동되는 하역기계로부터 배출되는 대기오염물질 배출량을 산정하였다. 이를 위해 각 항만하역사로부터 2017년 기준 하역장비의 대수, 제원, 가동시간 등 활동자료를 수집하였다. 분석 결과, CO 105.6톤, NOX 243.2톤, SOX 0.005톤, PM 22.8톤, VOC 26.0톤, NH3 0.2톤이 발생한 것으로 나타났다. CO와 NOX의 배출은 하역기계 전체 배출량의 87.71%를 차지하였으며, 크레인, 지게차, 트랙터, 로더의 배출량이 하역기계 전체 배출량의 84.79%를 차지하였다. 또한 노후화된 디젤엔진을 장착한 하역기계가 주 배출원임을 규명하였다. 분석된 대기오염물질 배출량 수치는 하역기계에 의한 항만 대기 오염의 심각성을 나타내며, 다음과 같은 친환경장비 도입이 시급함을 시사한다. 첫째, 오래된 디젤 장비의 LNG연료 또는 전기장비로의 교체가 필요하다. 둘째, NOX의 배출을 감소시킬 수 있는 선택적환원촉매(SCR)와 같은 후처리장비의 사용이 필요하다. 향후 체계적이고 공식적인 국가 대기오염배출 인벤토리 정립 방법을 설정하고, 매년 하역기계에서 배출되는 대기오염물질 배출량을 모니터링 및 평가하는 것이 필요하다.

Abstract AI-Helper 아이콘AI-Helper

Currently, in-port emissions are a serious problem in port cities. However, emissions, especially non-greenhouse gases, from the operation of cargo handling equipment (CHE) have received significant attention from scientific circles. This study estimates the amount of emissions from on-land port die...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The real-time operating activity data of CHE was collected from all port handling companies. In this study, CHE is classified into 8 groups with different characteristics and functions in port operation: Crane, Container Handling Equipment (CtHE), Yard Tractor, Forklift, Loader, Excavator, and Sweeper. The collected data were summarized and shown in [Table 3].
  • The bottom-up approach with detailed activity time data of all CHE was applied to capture CHE emission inventory in this study. The estimation is followed NONROAD model of EPA (EPA, 2008; EPA, 2010a; EPA, 2010b).
  • The calculation of SOx emission factor for a given engine is different from above pollutants while NONROAD model of EPA computed SOx emission factor directly (not using EF0) based on brake-specific fuel consumption and adjusted HC emission factor. However, the effect of HC emission factor is minor [16].
  • The goal of this paper is summarized as follows: (1) to generate the up-to-date and reliable diesel CHE emission inventory for 7 target pollutants of CAPSS: CO, NOx, SOx, PM (including PM10 and PM2.5), volatile organic compounds (VOC), and NH3 according geographical areas and CHE types based on activity-based approach and real-time activity hour to emphasize the contribution of diesel engines to port pollution; (2) to contribute to the literature of non-GHG diesel CHE emissions estimation; (3) to suggest appropriate green port policies for CHE in Korea seaports, especially application of green alternative fuel. Therefore, LNG and diesel-electric (hybrid) engines are not taken into consideration.
  • This study reviewed the literature to select the most appropriate model for CHE emission estimation, then calculate the corresponding emission factors. However, LF, EFs, and other parameters were constructed based on other foreign situation.

대상 데이터

  • The exhausted amounts are assessed as the products of emission factors and activity levels for all non-road mobile sources. The model covers more than 80 basic and 260 specific types of non-road equipment (EPA, 2008).
  • This study will cover all CHE activities in 5 key component ports of Port of Incheon, including North Port, Inner Port, Coastal Port, South Port, and New Port, with 3 other specialized ports named Geocheom-do Port, Song-do Port, and Yeongheung-do Port. 17 berths in North Port are specialized for handling industrial raw materials (timber, steel…) with the handling maximum capacity of 50,000DWT.
본문요약 정보가 도움이 되었나요?

참고문헌 (46)

  1. Agrawal, H., Welch, W. A., Miller, J. W., & Cocker, D. R. (2008). Emission measurements from a crude oil tanker at sea. Environmental science & technology, 42(19), 7098-7103. 

  2. Ameriacan Association of Port Authorities (2016), World port rankings 2016. 

  3. California Air Resources Board, 2007. Off-road emission inventory program. 

  4. Corbett, J. J., & Fischbeck, P. (1997). Emissions from ships. Science, 278(5339), 823-824. 

  5. Dallmann, T., & Menon, A. (2016). Technology pathways for diesel engines used in non-road vehicles and equipment. International Council on Clean Transportation (ICCT): Washington, DC, USA. 

  6. Dieselnet. Korea: Diesel fuel. 

  7. Droge, R., Kuenen, J. J. P., Pulles, M. P. J., & Heslinga, D. C. (2010). The revised EMEP/EEA Guidebook compared to the country specific inventory system in the Netherlands. Atmospheric Environment, 44(29), 3503-3510. 

  8. EEA, 2019. EMEP/EEA air pollutant emission inventory guidebook 2019. 

  9. Eyring, V., Isaksen, I. S., Berntsen, T., Collins, W. J., Corbett, J. J., Endresen, O., ... & Stevenson, D. S. (2010). Transport impacts on atmosphere and climate: Shipping. Atmospheric Environment, 44(37), 4735-4771. 

  10. Green Growth Korea (2019), National assembly's press release about 5 paticular matter controling laws. 

  11. Green Growth Korea (2013), National strategy. 

  12. Green Growth Korea (2015), Raising the anchor of building green port. 

  13. Guan, B., Zhan, R., Lin, H., & Huang, Z. (2014). Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Applied Thermal Engineering, 66(1-2), 395-414. 

  14. Han, S. H., Youn, J. S., Kim, W. J., Seo, Y. H., & Jung, Y. W. (2011). Estimation of air pollutant emissions from port-related sources in the port of Incheon. Journal of Korean Society for Atmospheric Environment, 27(4), 460-471. 

  15. Hasegawa, M., & Fukamachi, S. (2014). U.S. Patent Application No. 13/880,748. 

  16. Incheon Port Authority (2019a), Incheon Port overview. 

  17. Incheon Port Authority (2019b). Green management vision and goal. 

  18. Incheon Port Authority. Introduction. 

  19. Jia, X., Feng, X., & Jiang, L. (2014). Research of air pollutants from cargo handling equipment. J East China Jiaotong Univ, 3, 12-17. 

  20. Kean, A. J., Sawyer, R. F., & Harley, R. A. (2000). A fuel-based assessment of off-road diesel engine emissions. Journal of the Air & Waste Management Association, 50(11), 1929-1939. 

  21. Kui X. Establishment of a list of non-road mobile source emission in Beijing, Tianjin and Hebei. in: proceedings of the 2013 annual conference of the Chinese academy of environmental sciences, Yunnan, Kunming, 1 August 2013, vol. 3, p.7. Beijing: China Environmental Science Society. 

  22. Kurokawa, J. (2013). Emisions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2. Atmos. Chem. Phys. Discuss., 13, 10046-10123. 

  23. Lee, D. G., Lee, Y. M., Jang, K. W., Yoo, C., Kang, K. H., Lee, J. H., ... & Hong, J. H. (2011). Korean national emissions inventory system and 2007 air pollutant emissions. Asian Journal of Atmospheric Environment, 5(4), 278-291. 

  24. Lewis, P., Rasdorf, W., Frey, H. C., Pang, S. H., & Kim, K. (2009). Requirements and incentives for reducing construction vehicle emissions and comparison of nonroad diesel engine emissions data sources. Journal of Construction Engineering and management, 135(5), 341-351. 

  25. Li, D. L., Wu, Y., Zhou, Y., Du, X., & Fu, L. X. (2012). Fuel consumption and emission inventory of typical construction equipments in China. Huan jing ke xue Huanjing kexue, 33(2), 518-524. 

  26. Lindgren, M., & Hansson, P. A. (2004). Effects of transient conditions on exhaust emissions from two non-road diesel engines. Biosystems Engineering, 87(1), 57-66. 

  27. Lyons, J. M., Carlock, M., & Carlson, T. R. (2010). Emissions from Diesel-Fueled Non-Road Equipment in California. 

  28. Millstein, D. E., & Harley, R. A. (2009). Revised estimates of construction activity and emissions: Effects on ozone and elemental carbon concentrations in southern California. Atmospheric Environment, 43(40), 6328-6335. 

  29. Monforti, F., & Pederzoli, A. (2005). THOSCANE: a tool to detail CORINAIR emission inventories. Environmental Modelling & Software, 20(5), 505-508. 

  30. NIER. Air pollutants. Retrieved from http://airemiss.nier.go.kr/mbshome/mbs/airemiss/subview.do?idairemiss_020200000000 

  31. Port of Long Beach (2018). 2018 Air Emissions Inventory. 

  32. Port of Los Angeles (2018). Annual Inventory of Air Emissions. 

  33. Pouliot, G., Pierce, T., van der Gon, H. D., Schaap, M., Moran, M., & Nopmongcol, U. (2012). Comparing emission inventories and model-ready emission datasets between Europe and North America for the AQMEII project. Atmospheric Environment, 53, 4-14. 

  34. Samaras, Z., & Zierock, K. H. (1995). Off-road vehicles: a comparison of emissions with those from road transport. Science of the total environment, 169(1-3), 249-255. 

  35. Shao, Z. (2016). Non-road emission inventory model methodology. The international council on clean transportation (Working paper), 4. 

  36. Song, S. (2014). Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port. Atmospheric Environment, 82, 288-297. 

  37. Tan, H., Liu, J., Shen, Y., & Fang, Y. (2013). Emission inventory of air pollutants from cargo handling equipment. Environ Sci Manage, 6, 82-87. 

  38. The United States Environemtal Protection Agency, 2008. Nonroad model, nonroad engines equipment and vehicles. 

  39. The United States Environemtal Protection Agency, 2009. Epa technical highlights: emission factors for locomotives, epa office of transportation and air quality. 

  40. The United States Environemtal Protection Agency, 2010a. Median life, annual activity and load factor values for nonroad engine emission modeling. 

  41. The United States Environemtal Protection Agency, 2010b. Exhaust and crankcase emission factor for nonroad engine modeling compression ignition. 

  42. Trozzi, C. (2010). Emission estimate methodology for maritime navigation. Techne Consulting, Rome. 

  43. Yang, Y. C., & Chang, W. M. (2013). Impacts of electric rubber-tired gantries on green port performance. Research in Transportation Business & Management, 8, 67-76. 

  44. Yang, Y. C., & Sam, K. Y. (2009). To evaluate operating efficiency of cargo handling facilities in the Container Yard. Maritime Quarterly, 18(3), 37-54. (in Chinese context) 

  45. Zhang, L. J., Zheng, J. Y., Yin, S. S., Peng, K., & Zhong, L. J. (2010). Development of non-road mobile source emission inventory for the Pearl River Delta region. Huan jing ke xueHuanjing kexue, 31(4), 886-891. 

  46. Zhang, Y., Peng, Y. Q., Wang, W., Gu, J., Wu, X. J., & Feng, X. J. (2017). Air emission inventory of container ports' cargo handling equipment with activity-based "bottom-up" method. Advances in Mechanical Engineering, 9(7), 1687814017711389. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로