$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

활성단층 조사에 활용되는 원격탐사 기술과 사례의 고찰
A Review on Remote Sensing Techniques and Case Studies for Active Fault Investigation 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.37 no.6 pt.2, 2021년, pp.1901 - 1922  

권오상 (부경대학교 지구환경과학부) ,  손효록 (부경대학교 지구환경과학부) ,  배상열 (부경대학교 지구환경과학부) ,  박기웅 (부경대학교 지구환경과학부) ,  최호석 (부경대학교 지구환경과학부) ,  김영석 (부경대학교 지구환경과학과) ,  이승국 (부경대학교 지구환경과학과)

초록
AI-Helper 아이콘AI-Helper

대부분의 대규모 지진은 기존의 활성단층이 재활하여 발생하므로, 이러한 활성단층의 위치와 특성을 파악하는 것은 지진재해 연구와 지진방재 측면에서 매우 중요하다. 최근에는 활성단층 조사에서 지표지질조사에 앞서 실시하는 선형구조 분석에 다양한 원격탐사 기술이 유용하게 활용되고 있다. 본 논문에서는 원격탐사 기술 중 이러한 활성단층 조사에 널리 활용되는 위성원격탐사, 항공원격탐사, 그리고 InSAR, LiDAR 기법의 간단한 원리와 적용사례를 소개하고자 한다. 또한, GIS를 활용하여 단층활동에 의해 형성된 경사급변점과 주향이동단층의 수평변위를 분석한 사례를 소개하고자 한다. 토의에서는 항공사진을 활용하여 DEM을 구축할 때 발생할 수 있는 문제점들과 해결방안, 항공 LiDAR 기반 DEM의 문제점을 극복하여 개발한 새로운 기법인 RRIM에 대해 논의하고자 한다. 활성단층 조사에서 어떤 원격탐사 기술이 활용되는지 이해하고 각 원격탐사기법의 장단점과 한계점을 이해하여 상황에 따라 적절한 방법을 활용하는 것은 효율적인 활성단층조사를 위해 중요하다.

Abstract AI-Helper 아이콘AI-Helper

Since most large earthquakes occur by reactivation of preexisting active faults, it is important to understand the locations and characteristics of active faults in terms of earthquake hazard research and earthquake disaster prevention. Recently, several remote sensing techniques are broadly used fo...

주제어

표/그림 (13)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 이 논문에서는 다양한 원격탐사 기법 중에서 활성단층 조사에 활용되는 원격탐사 기술과 이들을 활용한 사례들에 대해 간단히 살펴보았다. 활성단층 조사에서 원격탐사 기술은 지표지질조사를 실시하기 전 선형구조 분석에 유용하게 활용된다.
본문요약 정보가 도움이 되었나요?

참고문헌 (110)

  1. Aber, J.S., I. Marzolff, J. Ries, and S.E.W. Aber, 2019. Small-format aerial photography and UAS imagery: Principles, techniques and geoscience applications, Academic Press, 325. 

  2. Abrams, M., S. Hook, and B. Ramachandran, 2002. ASTER user handbook, version 2, Jet propulsion laboratory, California, 135: 1-2. 

  3. Ahn, K.W., H.S. Lee, and D.J. Kim, 2011. DEM generation of tidal flat in Suncheon bay using digital aerial images, Korean Journal of Remote Sensing, 27(4): 411-420 (in Korean with English abstract). 

  4. Amelung, F. and J.W. Bell, 2003. Interferometric synthetic aperture radar observations of the 1994 Double Spring Flat, Nevada, earthquake (M5.9), Journal of Geophysical Research: Solid Earth, 108(B9): 2433-2443. 

  5. Arrowsmith, J.R. and O. Zielke, 2009. Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment, Geomorphology, 113(1-2): 70-81. 

  6. Bacques, G., M. de Michele, D. Raucoules, H. Aochi, and F. Rolandone, 2018. Shallow deformation of the San Andreas fault 5 years following the 2004 Parkfield earthquake (Mw6) combining ERS2 and Envisat InSAR, Scientific Reports, 8(1): 1-10. 

  7. Baldi, P., N. Cenni, M. Fabris, and A. Zanutta, 2008. Kinematics of a landslide derived from archival photogrammetry and GPS data, Geomorphology, 102(3-4): 435-444. 

  8. Bierman, R., Paul, Montgomery, and R., David, 2013. Key concepts in geomorphology, W. H. Freeman and Company, London, GBR. 

  9. Biggs, J. and T.J. Wright, 2020. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade, Nature Communications, 11(1): 1-4. 

  10. Bistacchi, A., W.A. Griffith, S.A.F. Smith, G.D. Toro, R. Jones, and S. Nielsen, 2011. Fault roughness at seismogenic depths from LIDAR and photogrammetric analysis, Pure and Applied Geophysics, 168(12): 2345-2363. 

  11. Bonilla, M.G., R.K. Mark, and J.J. Lienkaemper, 1984. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement, Bulletin of the Seismological Society of America, 74(6): 2379-2411. 

  12. Burgmann, R., P.A. Rosen, and E.J. Fielding, 2000. Synthetic Aperture Radar Interferometry to Measure Earth's Surface Topography and Its Deformation, Annual Review of Earth and Planetary Sciences, 28(1): 169-209. 

  13. Byrne, D.E., L.R. Sykes, and D.M. Davis, 1992. Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone, Journal of Geophysical Research, 97(B1): 449-478. 

  14. Chen, R.F., C.W. Lin, Y.H. Chen, T.C. He, and L.Y. Fei, 2015. Detecting and characterizing active thrust fault and deep-seated landslides in dense forest areas of southern Taiwan using airborne LiDAR DEM, Remote Sensing, 7(11): 15443-15466. 

  15. Chen, W.S., C.C. Yang, I.C. Yen, L.S. Lee, K.J. Lee, H.C. Yang, H.C. Chang, Y. Ota, C.W. Lin, W.H. Lin, T.S. Shih, and S.T. Lu, 2007. Late Holocene paleoseismicity of the southern part of the Chelungpu fault in central Taiwan: Evidence from the Chushan excavation site, Bulletin of the Seismological Society of America, 97(1B): 1-13. 

  16. Chernicoff, C.J., J.P. Richards, and E.O. Zappettini, 2002. Crustal lineament control on magmatism and mineralization in northwestern Argentina: geological, geophysical, and remote sensing evidence, Ore Geology Reviews, 21: 127-155. 

  17. Chiba, T.K., S. Shinichi, and Y. Suzuki, 2008. Red relief image map: New visualization method for three dimensional data, Remote Sensing and Spatial Information Sciences, 37(B2): 1071-1076. 

  18. Chiba, T., Y. Suzuki, and T. Hiramatsu, 2007. Digital terrain representation methods and red relief image map, a new visualization approach, Journal of the Japan Cartographers Association, 45(1): 27-36 (in Japanese with English abstract). 

  19. Choi, H. and S.H. Hong, 2007. Utilization Methods and Generation DEMs by Using Aerial Photographs, Journal of the Korea Contents Association, 7(5): 168-175 (in Korean with English abstract). 

  20. Choi, H.J., 2010. A study on the Consistency of NIR Digital Aerial Imagery and LiDAR Data, Paper of Masters degree, Kyonggi University graduate school, Seoul, KOR, (in Korean with English abstract). 

  21. Choi, J.H., Y.S. Kim, and Y. Klinger, 2017. Recent progress in studies on the characteristics of surface rupture associated with large earthquakes, Journal of the Geological Society of Korea, 53(1): 129-157 (in Korean with English abstract). 

  22. Choi, S.J., Y.S. Ghim, Y. Cheon, and K. Ko, 2019. The first discovery of Quaternary fault in the Western part of the South Yangsan fault-Sinwoo site, Economic and Environmental Geology, 52(3): 251-258 (in Korean with English abstract). 

  23. Choi, W., C. Jang, I. Daiei, and Y. Makoto, 2013. The lineament analysis using ASTER images in the west coastal area of Korean Peninsula, 2013 Join Fall Meeting of Korean Geological Societies, 49(1): 54-54 (in Korean with English abstract). 

  24. Cluff, L.S. and D.B. Slemmons, 1972. Wasatch fault zone-features defined by low-sun angle photography, Utah Geological Association, 1: G1-G9. 

  25. Costantino, D. and M.G. Angelini, 2011. Terrestrial LiDAR survey of archaeological site for prototyping, Journal of Earth Science and Engineering, 1(1): 2-9. 

  26. Cowgill, E., 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China, Earth and Planetary Science Letters, 254(3-4): 239-255. 

  27. Ewiak, O., P. Victor, and O. Oncken, 2015. Investigating multiple fault rupture at the Salar del Carmen segment of the Atacama Fault System (northern Chile): Fault scarp morphology and knickpoint analysis, Tectonics, 34: 187-212. 

  28. Galadini, F. and P. Galli, 2000. Active Tectonics in the Central Apennines (Italy) - Input Data for Seismic Hazard Assessment, Natural Hazards, 22: 225-268. 

  29. Ghobarah, A., S. Murat, and I. Nistor, 2006. The impact of the 26 December 2004 earthquake and tsunami on structures and infrastructure, Engineering Structures, 28(2): 312-326. 

  30. Grant, L.B. and K. Sieh, 1994. Paleoseismic evidence of clustered earthquakes on the San Andreas fault in the Carrizo Plain, California, Journal of Geophysical Research: Solid Earth, 99(B4): 6819-6841. 

  31. Gwon, O., K. Park, S.P. Naik, H.C. Shin, and Y.S. Kim, 2021. A study on the characteristics of fault activity in the southern part of the Ulsan fault using paleoseismic method, Journal of the Geological Society of Korea, 57(2): 109-121 (in Korean with English abstract). 

  32. Hackman, R.J., 1967. Time, shadows, terrain and photointerpretation, in Geological Survey Research 1967, United States Geological Survey, 575-B: BI55-BI60. 

  33. Hamling, I.J., S. Hreinsdottir, K. Clark, J. Elliott, C. Liang, E. Fielding, N. Litchfield, P. Villamor, L. Wallace, T.J. Wright, E. D'Anastasio, S. Bannister, D. Burbidge, P. Denys, P. Gentle, J. Howarth, C. Mueller, N. Palmer, C. Pearson, W. Power, P. Barnes, D.J.A. Barrell, R. Van Dissen, R. Langridge, T. Little, A. Nicol, J. Pettinga, J, Rowland, and M. Stirling, 2017. Complex multifault rupture during the 2016 Mw 7.8 Kaikoura earthquake, New Zealand, Science, 356(6334): eaam7194. 

  34. Hofle, B. and M. Rutzinger, 2011. Topographic airborne LiDAR in geomorphology: A technological perspective, Zeitschrift fur Geomorphologie-Supplementband, 55(2): 1-29. 

  35. Holdsworth, R.E., C.A. Butler, and A.M. Roberts, 1997. The recognition of reactivation during continental deformation, Journal of Geological Society London, 154: 73-78. 

  36. Jeong, I., J.Y. Park, M. Park, H. Shin, H.G. Jeong, and S. Kim, 2010. Application of a Grid-Based Rainfall-Runoff Model Using SRTM DEM, Journal of the Korean Association of Geographic Information Studies, 13(4): 157-169 (in Korean with English abstract). 

  37. Jeong, Y., J. Yu, S.M. Koh, and C. Heo, 2015. Assessment of Rocks and Alteration Information Extraction using ASTER data for Ovorkhangai Province, Mongolia, Economic and Environmental Geology, 48(4): 325-335 (in Korean with English abstract). 

  38. Kaneda, H. and T. Chiba, 2019. Stereopaired Morphometric Protection Index Red Relief Image Maps (Stereo MPI-RRIMs): Effective Visualization of High-Resolution Digital Elevation Models for Interpreting and Mapping Small Tectonic Geomorphic Features, Bulletin of the Seismological Society of America, 109(1): 99-109. 

  39. Kang, K.H., H.G. Sohn, J.H. Jung, and S.K. Choi, 2009. Accuracy Verification of ASTER DEM and SRTM DEM using Digital Topographic Map, Korean Society for Geospatial Information Science: 378-383 (in Korean with English abstract). 

  40. Khattri, K.N., 1987. Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary, Tectonophysics, 138(1): 79-92. 

  41. Kim, D.E. and J.S. Oh, 2019. Landform Classification Using Geomorphons on the Middle Yangsan Fault System, Southeastern Korea, Journal of the Korean Geographical Society, 54(5): 493-505 (in Korean with English abstract). 

  42. Kim, D.E. and Y.B. Seong, 2021. Cumulative Slip Rate of the Southern Yangsan Fault from Geomorphic Indicator and Numerical Dating, Journal of the Korean Geographical Society, 56(2): 201-213 (in Korean with English abstract). 

  43. Kim, H.T., Y.S. Kim, and K.J. We, 2014. Basic concepts and geological applications of LiDAR, The Journal of Engineering Geology, 24(1): 123-135 (in Korean with English abstract). 

  44. Kim, K.H., J.H. Ree, Y.H. Kim, S. Kim, S.Y. Kang, and W. Seo, 2018. Assessing whether the 2017, Mw 5.4 Pohang earthquake in South Korea was an induced event, Science, 360(6392): 1007-1009. 

  45. Kim, N., J.H. Choi, S.I. Park, T.H. Lee, and Y. Choi, 2020. Cumulative offset analysis of the Central-Southern Yangsan Fault based on topography of Quaternary fluvial terrace, Journal of the Geological Society of Korea, 56(2): 135-154 (in Korean with English abstract). 

  46. Kim, T., H.C. Shin, and Y.S. Kim, 2020. Characteristics of the topographical deformation in the central part of the Ulsan fault, Journal of the Geological Society of Korea, 56: 193-209 (in Korean with English abstract). 

  47. Kim, Y.H., W.H. He, S.D. Ni, H. Lim, and S.C. Park, 2017. Earthquake Source Mechanism and Rupture Directivity of the 12 September 2016 Mw 5.5 Gyeongju, South Korea, Earthquake, Bulletin of the Seismological Society of America, 107: 2525-2531. 

  48. Kim, Y.S. and K. Jin, 2006. Estimated earthquake magnitude from the Yugye Fault displace-ment on a trench section in Pohang, SE Korea, Journal of the Geological Society of Korea, 42(1): 79-94 (in Korean with English abstract). 

  49. Kim, Y.S., T. Kim, J.B. Kyung, C.S. Cho, J.H. Choi, and C.U. Choi, 2017. Preliminary study on rupture mechanism of the 9.12 Gyeongju earthquake, Journal of the Geological Society of Korea, 53(3): 407-422 (in Korean with English abstract). 

  50. Kim, Y.S., J.Y. Park, J.H. Kim, H.C. Shin, and D.J. Sanderson, 2004. Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, Southeast Korea, Island Arc, 13(3): 403-415. 

  51. Kim, Y.S., M. Son, J.H. Choi, J.H. Choi, Y.B. Seong, and J. Lee, 2020. Processes and challenges for the production of Korean active faults map, Journal of the Geological Society of Korea, 56: 113-134 (in Korean with English abstract). 

  52. Klinger, Y., K. Sieh, E.R.H.A.N. Altunel, A. Akoglu, A. Barka, T. Dawson, and T. Rockwell, 2003. Paleoseismic evidence of characteristic slip on the western segment of the North Anatolian fault, Turkey, Bulletin of the Seismological Society of America, 93(6): 2317-2332. 

  53. Knuepfer, P.L., 1988. Estimating ages of late Quaternary stream terraces from analysis of weathering rinds and soils, Geological Society of America Bulletin, 100(8): 1224-1236. 

  54. Ko, K., J.H. Choi, P. Edwards, and Y.S. Kim, 2015. Paleostress changes based on analysis of geological structures around the Byeonsan peninsula area, Journal of the Geological Society, 51(2): 157-170 (in Korean with English abstract). 

  55. Kondo, H., V. Ozaksoy, and C. Yildirim, 2010. Slip history of the 1944 Bolu-Gerede earthquake rupture along the North Anatolian fault system: Implications for recurrence behavior of multisegment earthquakes, Journal of Geophysical Research, 115: B04316. 

  56. Kumar, S., S.G. Wesnousky, T.K. Rockwell, R.W. Briggs, V.C. Thakur, and R. Jayangondaperumal, 2006. Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya, Journal of Geophysical Research, 111: B03304. 

  57. Kyung, J.B., 2010. Paleoseismological study and evaluation of maximum earthquake magnitude along the Yangsan and Ulsan Fault Zones in the Southeastern Part of Korea, Geophysics and Geophysical Exploration, 13(3): 187-197 (in Korean with English abstract). 

  58. Langridge, R.M., W.F. Ries, T. Farrier, N.C. Barth, N. Khajavi, and G.P. De Pascale, 2014. Developing sub 5-m LiDAR DEMs for forested sections of the Alpine and Hope faults, South Island, New Zealand: Implications for structural interpretations, Journal of Structural Geology, 64: 53-66. 

  59. Lee, B.W. and S.S. Kim, 2021. Application of Terrestrial LiDAR for Reconstructing 3D Images of Fault Trench Sites and Web-based Visualization Platform for Large Point Clouds, Economic and Environmental Geology, 54(2): 177-186 (in Korean with English abstract). 

  60. Lee, C., Y. Seong, J.S. Oh, and D. Kim, 2019. Tectonic Geomorphology on Yugye-Bogyeongsa Area of Yangsan Fault Zone, Journal of the Korean Geomorphological Association, 26: 93-106 (in Korean with English abstract). 

  61. Lee, G., 1998. Historical earthquake data of Korean, Journal of the Korean Geophysical Sociery, 1(1): 3-22 (in Korean with English abstract). 

  62. Lee, G., 2021. Principles and Methods of Remote Sensing, CIR, Seoul, Korea, pp. 5-6. 

  63. Lee, H.J., 2014. Extracting Models of Hydrothermal Altered Minerals by ASTER SWIR Images, Paper of doctor degree, Pukyong National University graduate school, Pusan, KOR. 

  64. Lee, H.J. and G.S. Cho, 2017. Comparative accuracy of terrestrial LiDAR and unmanned aerial vehicles for 3D modeling of cultural properties, Journal of Cadastre and Land InformatiX, 47(1): 179-190 (in Korean with English abstract). 

  65. Lee, I.S., 2007. 3D boundary extraction of a building using terrestrial laser scanner, Spatial Information Research, 15(1): 53-65 (in Korean with English abstract). 

  66. Lin, Z., H., Kaneda, S. Mukoyama, N. Asada, and T. Chiba, 2013. Detection of subtle tectonic-geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey, Geomorphology, 182: 104-115. 

  67. Lindvall, S.C. and T.K. Rockwell, 1995. Holocene activity of the Rose Canyon fault in San Diego, California, Journal of Geophysical Research, 100: 24121-24132. 

  68. Madugo, C.M., J.F. Dolan, and R.D. Hartleb, 2012. New paleoearthquake ages from the Western Garlock Fault: Implications for regional earthquake occurrence in Southern California, Bull, Seismological Society of America, 102(6): 2282-2299. 

  69. Massonnet, D., P. Briole, and A. Arnaud, 1995. Deflation of Mount Etna monitored by spaceborne radar interferometry, Nature, 375(6532): 567-570. 

  70. Massonnet, D., K. Feigl, M. Rossi, and F. Adragna, 1994. Radar interferometric mapping of deformation in the year after the Landers earthquake, Nature, 369(6477): 227-230. 

  71. Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, 1993. The dispacement field of the Landers earthquake mapped by radar interferometry, Nature, 364(6433): 138-142. 

  72. Massonnet, D. and F. Sigmundsson, 2000. Remote sensing of volcano deformation by radar interometry from various satellites, Washington DC, American Geophysical Union Geophysical Monograph Series, 116: 207-221. 

  73. Massonnet, D., W. Thatcher, and H. Vadon, 1996. Detection of Post-seismic Fault Zone Collapse following the Landers Earthquake, Nature, 382: 612-616. 

  74. Mori, N., T. Takahashi, T. Yasuda, and H. Yanagisawa, 2011. Survey of 2011 Tohoku earthquake tsunami inundation and run-up, Geophysical Research Letters, 38(7): L00G14. 

  75. Mulvey, J.M., S.U. Awan, A.A. Qadri, and M.A. Maqsood, 2008. Profile of injuries arising from the 2005 Kashmir Earthquake: The first 72h, Injury, 39(5): 554-560. 

  76. Nelson, A., B. Atwater, P. Bobrowsky, L.A. Bradley, J. Clague, G. Carver, M. Darienzo, W. Grant, H. Krueger, R. Sparks, T. Stafford, and M. Stuiver, 1995. Radiocarbon evidence for extensive plate-boundary rupture about 300 years ago at the Cascadia subduction zone, Nature, 378: 371-374. 

  77. Nikolakopoulos, K.G., K. Soura, I.K. Koukouvelas, and N.G. Argyropoulos, 2017. UAV vs classical aerial photogrammetry for archaeological studies, Journal of Archaeological Science: Reports, 14: 758-773. 

  78. Oh, J.-S., 2019. High-resolution DEM Generation of High-relief Landforms Using UAV Its Application of Geomorphic Analysis, Journal of Photo Geography, 29(2): 115-127 (in Korean with English abstract). 

  79. Oh, J.S. and D.E. Kim, 2019. Lineament extraction and its comparison using DEMs based on LiDAR, digital topographic map, and aerial photo in the central segment of Yangsan Fault, Journal of the Korean Geographical Society, 54(5): 507-525 (in Korean with English abstract). 

  80. O'Leary, D.W., J.D. Friedman, and H.A. Pohn, 1976. Lineament, linear, lineation, some proposed new standards for old terms, Geological Society of America, 87: 1463-1469. 

  81. Park, C.S. and G.R. Lee, 2018. Study on Production of DEM Using Aerial Photo, Journal of the Geomorphological Association of Korea, 25(3): 105-120 (in Korean with English abstract). 

  82. Park, J., J. Kim, G. Lee, and J. Yang, 2017. Vertical Accuracy Assessment of SRTM Ver 3.0 and ASTER GDEM Ver 2 over Korea, Korean Society of Soil Groundwater Environment, 22(6): 120-128. 

  83. Park, Y., J.H. Ree, and S.H. Yoo, 2006. Fault slip analysis of Quaternary faults in southeastern Korea, Gondwana Research, 9(1-2): 118-125. 

  84. Peltzer, G., P. Rosen, F. Rogez, and K. Hudnut, 1996. Postseismic rebound in fault step-overs caused by pore fluid flow, Science, 273: 1202-1204. 

  85. Peltzer, G., P. Tapponnier, Y. Gaudemer, B. Meyer, S. Guo, K. Yin, Z. Chen, and H. Dai, 1988. Offsets of late Quaternary morphology, rate of slip, and recurrence of large earthquakes on the Chang Ma fault (Gansu, China), Journal of Geophysical Research: Solid Earth, 93(B7): 7793-7812. 

  86. Ritz, J.F., E.T. Brown, D.L. Bourles, H. Philip, A. Schlupp, G.M. Raisbeck, B. Yiou, and B. Enkhtuvshin, 1995. Slip rates along active faults estimated with cosmic-ray-exposure dates: Application to the Bogd fault, Gobi-Altai, Mongolia, Geology, 23(11): 1019-1022. 

  87. Robinson, R.A., S. Binnie, G. Gonzalez, and J. Cortes, 2011. Dating upper plate normal fault slip events in Late Pleistocene and Holocene sediments of northern Chile, AGU Fall Meeting Abstracts, 2011: 8. 

  88. Rockwell, T.K., S. Lindvall, T. Dawson, R. Langridge, W. Lettis, and Y. Klinger, 2002. Lateral offsets on surveyed cultural features resulting from the 1999 Izmit and Duzce earthquakes, Turkey, Bulletin of the Seismological Society of America, 92(1): 79-94. 

  89. Rodriguez, C.E, J.J. Bommer, and R.J. Chandler, 1999. Earthquake-induced landslides: 1980-1997, Soil Dynamics and Earthquake Engineering, 18(5): 325-346. 

  90. Saint Fleur, N., Y. Klinger, and N. Feuillet, 2020. Detailed map, displacement, paleoseismology, and segmentation of the Enriquillo-Plantain Garden Fault in Haiti, Tectonophysics, 778: 1-25. 

  91. Satake, K., 1995. Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami, Pure and Applied Geophysics, 144: 455-470. 

  92. Sieh, K.E. and R.H. Jahns, 1984. Holocene activity of the San Andreas fault at Wallace creek, California, Geological Society of America Bulletin, 95(8): 883-896. 

  93. Sigmundsson, F., H. Vadon, and D. Massonnet, 1997. Readjustment of the Krafla spreading segment to crustal rifting measured by satellite radar interferometry, Geophysical Research Letter, 24(15): 1843-1846. 

  94. Song, Y., S. Ha, S. Lee, H.C. Kang, J.H. Choi, and M. Son, 2020. Quaternary structural characteristics and paleoseismic interpretation of the Yangsan Fault at Dangu-ri, Gyeongju-si, SE Korea, through trench survey, Journal of the Geological Society of Korea, 56(2): 155-173. 

  95. Stramondo, S., M. Moro, C. Tolomei, F.R. Cinti, and F. Doumaz, 2005. InSAR surface displacement field and fault modeling for the 2003 Bam earthquake (southeastern Iran), Journal of Geodynamics, 40(2-3): 347-353. 

  96. USGS (United States Geological Survey), 2006. Geological Survey Earthquake Data Base, United States Geological Survey, Reston, VA, USA. 

  97. Vadon, H. and F. Sigmundsson, 1997. Crustal deformation from 1992 to 1995 at the Mid-Atlantic Ridge, Southweast Iceland, mapped by satellite radar interferometry, Science, 275: 193-197. 

  98. Wells, D.L. and K.J. Coppersmith, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bulletin of the seismological Society of America, 84(4): 974-1002. 

  99. Wright, T. J., C. Ebinger, J. Biggs, A. Ayele, G. Yirgu, D. Kier, and A. Stork, 2006. Magma-maintained rift segmentation at continental rupture in the 2005 Afar dying episode, Nature, 442(7100): 291-294. 

  100. Yin, Y., F. Wang, and P. Sun, 2009. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China, Landslides, 6(2): 139-152. 

  101. Yokoyama, R., M. Shirasawa, and R.J. Rike, 2002. Visualizing topography by openness: A new application of image processing to digital elevation models, Photogram, Engineering Remote Sensing, 68: 257-265. 

  102. Yoo, S., W. Nam, and J. Choi, 2007. Assessment of Accuracy of SRTM, Korean National Committee on Irrigation and Drainage, 14(1): 80-88 (in Korean with English abstract). 

  103. Yoon, D., M. Lee, and S. Lee, 2021. A Study on Photovoltaic Panel Monitoring Using Sentinel-1 InSAR Coherence, Korean Journal of Remote Sensing, 37(2): 233-243 (in Korean with English abstract). 

  104. Yoon, S.O., J.B. Jeon, and S.I. Hwang, 2001. Time-Spatial Characteristic of Earthquakes in Korean Peninsula since Choseon Dynasty, Journal of the Korean Geographical Society, 36(2): 93-110 (in Korean with English abstract). 

  105. Zebker, H.A. and R.M. Goldstein, 1986. Topographic mapping from interferometric synthetic aperture radar observations, Journal of Geophysical Research: Solid Earth, 91(B5): 4993-4999. 

  106. Zebker, H.A., P.A. Rosen, and S. Hensley, 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, Journal of Geophysical Research: Solid Earth, 102(B4): 7547-7563. 

  107. Zebker, H.A. and J. Vilasenor, 1992. Decorrelation in interferometric radar echoes, IEEE Transactions on Geoscience and Remote Sensing, 30(5): 950-959. 

  108. Zielke, O., J.R. Arrowsmith, L. Grant Ludwig, and S.O. Akciz, 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas fault, Science, 327(5969): 1119-1122. 

  109. Zielke, O., J.R. Arrowsmith, L. Grant Ludwig, and S.O. Akciz, 2012. High-resolution topography-derived offsets along the 1857 Fort Tejon earthquake rupture trace, San Andreas fault, Bulletin of the Seismological Society of America, 102(3): 1135-1154. 

  110. Zielke, O., Y. Klinger, and J.R. Arrowsmith, 2015. Fault slip and earthquake recurrence along strike-slip faults-Contributions of highresolution geomorphic data, Tectonophysics, 638: 43-62. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로