$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

다중 선형 회귀 분석과 랜덤 포레스트를 이용한 SS, T-P 대리모니터링 기법 평가
Evaluation of Surrogate Monitoring Parameters for SS and T-P Using Multiple Linear Regression and Random Forest 원문보기

한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.63 no.2, 2021년, pp.51 - 60  

정민혁 (Department of Rural and Bio-Systems Engineering, Chonnam National University) ,  범진아 (Department of Rural and Bio-Systems Engineering, Chonnam National University) ,  최동호 (Presidential Water Commission Support Department Planning and Operation, Republic of Korea Presidential Water Commission) ,  김영주 (Department of Cadastre and Civil Engineering, VISION College of Jeonju) ,  허용구 (Tropical Research and Education, Department of Agricultural and Biological Engineering, University of Florida) ,  윤광식 (Department of Rural and Bio-Systems Engineering, Chonnam National University)

Abstract AI-Helper 아이콘AI-Helper

Effective nonpoint source (NPS) pollution management requires frequent water quality monitoring, which is, however, often costly to be implemented in practice. Statistical techniques and machine learning methods allow us to identify and focus on fundamental environmental variables that have close re...

주제어

표/그림 (9)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Moreover, the runoff in high flow condition shows higher relative importance than low flow condition, which is related to the high concentrations of T-P in farming period. This study demonstrated the machine learning techniques could help to improve the efficiency of NPS pollutant monitoring and prediction by identifying fundamental environmental variables that are relatively easily obtained but still closely related to the NPS pollutants. The results also showed that turbidity could serve as a surrogate water quality parameter for SS and T-P concentrations at acceptable accuracy levels.
  • This study explored the potential of the RF algorithm as a tool to efficiently identify primary variables that can serve as surrogate for NPS pollutants. We developed prediction models using MLR (traditional statistical model) and RF (the latest statistical data mining technique) and compared their performance to demonstrate their capacities and potentials.
  • We developed prediction models using MLR (traditional statistical model) and RF (the latest statistical data mining technique) and compared their performance to demonstrate their capacities and potentials. This study focused on SS and T-P that are common NPS pollutants in Korea.

가설 설정

  • (d) T-P using RF in low flow condition. (e) SS using MLR in high flow condition; (f) SS using RF in high flow condition; (g) T-P using MLR in high flow condition; (h) T-P using RF in high flow condition
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. Afendras, G., and M. Markatou, 2019. Optimality of training/test size and resampling effectiveness in cross-validation. Journal of Statistical Planning and Inference 199: 286-301. doi:10.1016/j.jspi.2018.07.005. 

  2. Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory, 267-281. 

  3. American Public Health Association (APHA), 2001. Standard Methods for the Examination of Water and Waste Water. 21st ed, Washington DC, USA. 

  4. Breiman, L., 2001. Random forests. Machine Learning 45: 5-32. 

  5. Breiman, L., J. Friedman, R. A. Olshen, and C. J. Stone, 1984. Classification and Regression Trees. Wadsworth: CRC press. 

  6. Camdevyren, H., N. Demyr, A. Kanik, and S. Keskyn, 2005. Use if principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecological Modelling 181(4): 581-589. doi:10.1016/j.ecolmodel.2004.06.043. 

  7. Chattergee, S., and A. S. Hadi, 1988. Sensitivity Analysis in Linear Regression. USA, Wiley. 

  8. Chenini, I., and S. Khemiri, 2009. Evaluation of ground water quality using multiple linear regression and structural equation modeling. International Journal of Environmental Science and Technology 6(3): 509-519. doi:10.1007/BF03326090. 

  9. DeForest, D. K., K. V. Brix, L. M. Tear, and W. J. Adams, 2018. Multiple linear regression models for predicting chronic aluminum toxicity to freshwater aquatic organisms and developing water quality guidelines. Environmental Toxicology and Chemistry 37(1): 80-90. doi:10.1002/etc.3922. 

  10. Diaz-Uriate, R., and S. A. de Andres, 2006. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7: 3. doi:10.1186/1471-2105-7-3. 

  11. Granata, F., S. Papirio, G. Esposito, R. Gargano, and G. Marinis, 2017. Machine learning algorithms for the forecasting of wastewater quality indicators. Water 9(2): 105. doi:10.3390/w9020105. 

  12. Hasanipanah, M., R. S. Faradonbeh, H. B. Amnieh, D. J. Armaghani, and M. Monjezi, 2017. Forecasting blast-induced ground vibration developing a CART model. Engineering with Computers 33: 307-316. doi:10.1007/s00366-016-0475-9. 

  13. Horsburgh, J. S., A. S. Jones, D. K. Stevens, D. G. Tarboton, and N. O. Mesner, 2009. A sensor network for high frequency estimation of water quality constituent fluxes using surrogates. Environmental Modelling and Software 25(9): 1031-1044. doi:10.1016/j.envsoft.2009.10.012. 

  14. Houser, J. N., P. J. Mulholland, and K. O. Maloney, 2006. Upland disturbance affects headwater stream nutrients and suspended sediments during baseflow and stormflow. Journal of Environmental Quality 35: 352-365. doi:10.2134/jeq2005.0102. 

  15. Johanna, I. F., and S. Petra, 2014. A turbidity-based method to continuously monitor sediment, carbon and nitrogen flows in mountainous watersheds. Journal of Hydrology 513: 45-57. doi:10.1016/j.jhydrol.2014.03.034. 

  16. Jones, A. S., K. S. David, S. H. Jefery, and O. Nancy, 2011. Surrogate measures for providing high frequency estimates of total suspended solids and total phosphorus concentrations. Journal of the American Water Resources Association 47(2): 239-253. doi:10.1111/j.1752-1688.2010.00505.x. 

  17. Jordan, P., A. Arnscheidt, and H. Mcgrogan, 2007. Characterising phosphorus transfers in rural catchments using a continuous bankside analyser. Hydrology and Earth System Science 11: 372-381. doi:10.5194/hess-11-372-2007. 

  18. LieB, M., B. Glaser, and B. Huwe, 2012. Uncertainty in the spatial prediction of soil texture comparison of regression tree and random forest models. Geoderma 170: 70-79. doi:10.1016/j.geoderma.2011.10.010. 

  19. Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50(3): 885-900. doi:10.13031/2013.23153. 

  20. Montgomery, J. L., T. C. Harmon, C. N. Haas, R. Hooper, N. L. Clesceri, W. Graham, W. J. Kaiser, A. Snaderson, B. Minsker, J. Schnoor, and P. Brezonik, 2007. The waters network: an integrated environmental observatory network for water research. Environmental Science and Technology 41(19): 6642-6647. doi:10.1021/es072618f. 

  21. Nash, J. E., and J. V. Sutcliffe, 1970. River flow forecasting through conceptual models part I - a discussion of principles. Journal of Hydrology. 10(3): 282-290. doi:10.1016/0022-1694(70)90255-6. 

  22. Ouedraogo, I., P. Defourny, and M. Vanclooster, 2018. Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeology Journal 27(3): 1-18. doi:10.1007/s10040-018-1900-5. 

  23. Prasad, A. M., L. R. Iverson, and A. Liaw, 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9: 181-199. doi:10.1007/s10021-005-0054-1. 

  24. Razi, M. A., and K. A. Athappilly, 2005. A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Systems with Applications 29(1): 65-74. doi:10.1016/j.eswa.2005.01.006. 

  25. Rodriguez-Galiano, V., M. P. Mendes, M. J. Garcia-soldado, M. Chica-Olmo, and L. Ribeiro, 2014. Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Science of the Total Environment 476-477: 189-206. doi:10.1016/j.scitotenv.2014.01.001. 

  26. Ruegner, H., M. Schwientek, B. Beckingham, B. Kuch, and P. Grathwohl, 2013. Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments. Environmental Earth Sciences 69: 373-380. doi:10.1007/s12665-013-2307-1. 

  27. Scholefield, D., T. L. Goff, J. Braven, L. Dbdon, T. Long, and M. Butler, 2005. Concerted diurnal patterns in riverine nutrient concentrations and physical conditions. Science of the Total Environment 344: 201-210. doi:10.1016/j.scitotenv.2005.02.014. 

  28. Settle, S., A. Goonetilleke, and G. Ayoko, 2007. Determination of surrogate indicators for phosphorus and solids in urban stormwater: application of multivariate data analysis techniques. Water, Air, and Soil Pollution 182: 149-161. doi:10.1007/s11270-006-9328-2. 

  29. Singh, B., P. Sihag, and K. Singh, 2017. Modeling of impact of water quality on infiltration rate of soil by random forest regression. Modeling Earth Systems and Environment 3: 999-1004. doi:10.1007/s40808-017-0347-3. 

  30. Snipes, M., and C. D. Taylor, 2014. Model selection and Akaike information criteria: an example from wine ratings and prices. Wine Economics and Policy 3(1): 3-9. doi:10.1016/j.wep.2014.03.001. 

  31. United States Environmental Protection Agency (USEPA), 2007. "An approach for using load duration curves in the development of TMDLs." 841-B-07-006, United States Environmentl Protection Agency, 1-68. 

  32. Verzani, J., 2018. Data sets, etc. for the text "Using R for introductory statistics". 2nd ed. Version 2.0-6. 

  33. Villa, A., J. Folster, and K. Kyllmar, 2019. Determining suspended solids and total phosphorus from turbidity: comparison of high-frequency sampling with conventional monitoring methods. Environmental Monioring and Assessment 191: 605. doi:10.1007/s10661-019-7775-7. 

  34. Wang, H., Y. Zhao, R. L. Pu, and Z. Z. Zhang, 2015. Mapping Robinia pseudoacacia forest health conditions by using combined spectral, spatial, and textural information extracted from IKONOS imagery and random forest classifier. Remote Sensing 7(7): 9020-9044. doi:10.3390/rs70709020. 

  35. Zambrano-Bigiarini, M., 2017. Goodness-of-fit functions for comparison of simulated and observed hydrological time series. Version 0.3-10. 

  36. Ziegler, A. D., L. X. Xi, and C. Tantasarin, 2011. Sediment load monitoring in the Mae Sa catchment in Northern Thailand, IAHS-AISH publication 86-91. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로