$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Behaviors of Desorption Agents During Removal of Cs From Clay Minerals and Actual Soil 원문보기

Journal of nuclear fuel cycle and waste technology = 방사성폐기물학회지, v.19 no.1, 2021년, pp.39 - 49  

Park, Chan Woo (Korea Atomic Energy Research Institute) ,  Kim, Ilgook (Korea Atomic Energy Research Institute) ,  Yoon, In-Ho (Korea Atomic Energy Research Institute) ,  Yang, Hee-Man (Korea Atomic Energy Research Institute) ,  Seo, Bum-Kyung (Korea Atomic Energy Research Institute)

Abstract AI-Helper 아이콘AI-Helper

The behaviors of various desorption agents were investigated during the desorption of cesium (Cs) from samples of clay minerals and actual soil. Results showed that polymeric cation exchange agents (polyethyleneimine (PEI)) efficiently desorbed Cs from expandable montmorillonite, whereas acidic deso...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • In the work reported in this paper, we investigated the behavior of various desorption agents (including polymeric cation exchange agents, single molecular cations, and acid) for desorption of Cs from clay minerals and actual soil sam- ples. The clay minerals investigated included expandable montmorillonite, non-expandable illite, and mixed-layer clay of expandable vermiculite and non-expandable biotite (hydrobiotite).
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. T. Yamamoto, "Radioactivity of Fission Product and Heavy Nuclides Deposited on Soil in Fukushima DaiIchi Nuclear Power Plant accident", J. Nucl. Sci. Technol., 49(12), 1116-1133 (2012). 

  2. D. Ding, Z. Zhang, Z. Lei, Y. Yang, and T. Cai, "Remediation of Radiocesium-Contaminated Liquid Waste, Soil, and Ash: A Mini Review Since the Fukushima Daiichi Nuclear Power Plant accident", Environ. Sci. Pollut. Res. Int., 23(3), 2249-2263 (2016). 

  3. R.M. Cornell, "Adsorption of Cesium on Minerals: A review", J. Radioanal. Nucl. Chem. Artic., 171(2), 483-500 (1993). 

  4. N.M. Nagy, J. Konya, and G.Wazelischen-Kun, "The Adsorption and Desorption of Carrier-Free Radioactive Isotopes on Clay Minerals and Hungarian Soils", Colloids Surfaces A Physicochem. Eng. Asp., 152(3), 245-250 (1999). 

  5. S.M. Park, J. Lee, E.K. Jeon, S. Kang, M.S. Alam, D.C.W. Tsang, D.S. Alessi, and K. Baek, "Adsorption Characteristics of Cesium on the Clay Minerals: Structural Change Under Wetting and Drying Condition", Geoderma, 340, 49-54 (2019). 

  6. H. Mukai, A. Hirose, S. Motai, R. Kikuchi, K. Tanoi, T.M. Nakanishi, T. Yaita, and T. Kogure, "Cesium Adsorption/Desorption Behavior of Clay Minerals Considering Actual Contamination Conditions in Fukushima", Sci. Rep., 6, 21543 (2016). 

  7. S.M. Park, D.S. Alessi, and K. Baek, "Selective Adsorption and Irreversible Fixation Behavior of Cesium onto 2:1 Layered Clay Mineral: A Mini Review", J. Hazard. Mater., 569-576 (2019). 

  8. J.C. Miranda-Trevino and C.A. Coles, "Kaolinite Properties, Structure and Influence of Metal Retention on pH", Appl. Clay Sci., 23(1-4), 133-139 (2003). 

  9. Y. Kim, R.J. Kirkpatrick, and R.T. Cygan, " 133 Cs NMR Study of Cesium on the Surfaces of Kaolinite and Illite", Geochim. Cosmochim. Acta, 60(21), 4059-4074 (1996). 

  10. C. Poinssot, B. Baeyens, and M.H. Bradbury, "Experimental and Modelling Studies of Caesium Sorption on Illite", Geochim. Cosmochim. Acta, 63(19), 3217-3227 (1999). 

  11. M.H. Bradbury and B. Baeyens, "A Generalised Sorption Model for the Soncentration Dependent Uptake of Caesium by Argillaceous Rocks", J. Contam. Hydrol., 42(2), 141-163 (2000). 

  12. M. Okumura, H. Nakamura, and M. Machida, "Mechanism of Strong Affinity of Clay Minerals to Radioactive Cesium: First-Principles Calculation Study for Adsorption of Cesium at Frayed Edge Sites in Muscovite", J. Phys. Soc. Japan, 82(3), 033802 (2013). 

  13. H. Mukai, T. Hatta, H. Kitazawa, H. Yamada, T. Yaita, and T. Kogure, "Speciation of Radioactive Soil Particles in the Fukushima Contaminated Area by IP Autoradiography and Microanalyses", Environ. Sci. Technol., 48(22), 13053-13059 (2014). 

  14. K. Tamura, T. Kogure, Y. Watanabe, C. Nagai, and H. Yamada, "Uptake of Cesium and Strontium Ions by Artificially Altered Phlogopite", Environ. Sci. Technol., 48(10), 5808-5815 (2014). 

  15. T. Kogure, K. Morimoto, K. Tamura, H. Sato, and A. Yamagishi, "XRD and HRTEM Evidence for Fixation of Cesium Ions in Vermiculite Clay", Chem. Lett., 41(4), 380-382 (2012). 

  16. B.H. Kim, C.W. Park, H.M. Yang, B.K. Seo, B.S. Lee, K.W. Lee, and S.J. Park, "Comparison of Cs Desorption from Hydrobiotite by Cationic Polyelectrolyte and Cationic Surfactant", Colloids Surfaces A Physicochem. Eng. Asp., 522, 382-388 (2017). 

  17. A.J. Fuller, S. Shaw, M.B. Ward, S.J. Haigh, J.F.W. Mosselmans, C.L. Peacock, S. Stackhouse, A.J. Dent, D. Trivedi, and I.T. Burke, "Caesium Incorporation and Retention in Illite Interlayers", Appl. Clay Sci., 108, 128-134 (2015). 

  18. A. de Koning and R.N.J. Comans, "Reversibility of Radiocaesium Sorption on Illite", Geochim. Cosmochim. Acta, 68(13), 2815-2823 (2004). 

  19. B.C. Bostick, M.A. Vairavamurthy, K.G. Karthikeyan, and J. Chorover, "Cesium Adsorption on Clay minerals: An EXAFS Spectroscopic Investigation", Environ. Sci. Technol., 36(12), 2670-2676 (2002). 

  20. C.W. Park, B.H. Kim, H.M. Yang, B.K. Seo, J.K. Moon, and K.W. Lee, "Removal of Cesium Ions from Clays by Cationic Surfactant Intercalation", Chemosphere, 168, 1068-1074 (2017). 

  21. S.M. Park, J.G. Kim, H.B. Kim, Y.H. Kim, and K. Baek, "Desorption Technologies for Remediation of Cesium-Contaminated Soils: A Short Review", Environ. Geochem. Health, 1-10 (2020). 

  22. L. Dzene, E. Tertre, F. Hubert, and E. Ferrage, "Nature of the Sites Involved in the Process of Cesium Desorption from Vermiculite", J. Colloid Interface Sci., 455, 254-260 (2015). 

  23. K. Tamura, H. Sato, and A. Yamagishi, "Desorption of Cs + Ions from a Vermiculite by Exchanging with Mg 2+ Ions: Effects of Cs + -Capturing Ligand", J. Radioanal. Nucl. Chem., 303(3), 2205-2210 (2014). 

  24. C.W. Park, B.H. Kim, H.M. Yang, B.K. Seo, and K.W. Lee, "Enhanced Desorption of Cs from Clays by a Polymeric Cation-Exchange Agent", J. Hazard. Mater., 327, 127-134 (2017). 

  25. B.H. Kim, C.W. Park, H.M. Yang, B.K. Seo, S.J. Park, and K.W. Lee, "Effect of Alkyl Length of Cationic Surfactants on Desorption of Cs from Contaminated Clay", J. Nucl. Fuel Cycle Waste Technol., 15(1), 27-34 (2017). 

  26. I. Kim, J.H. Kim, S.M. Kim, C.W. Park, I.H. Yoon, H.M. Yang, and K.W. Lee, "Desorption of Cesium from Hydrobiotite by Hydrogen Peroxide with Divalent Cations", J. Hazard. Mater., 390, 121381 (2020). 

  27. S.M. Kim, I.H. Yoon, I.G. Kim, C.W. Park, Y.H. Sihn, J.H. Kim, and S.J. Park, "Cs Desorption Behavior During Hydrothermal Treatment of Illite with Oxalic Acid", Environ. Sci. Pollut. Res., 27(28), 35580-35590 (2020). 

  28. K. Van Rompaey, E. Van Ranst, F. De Coninck, and N. Vindevogel, "Dissolution Characteristics of Hectorite in Inorganic Acids", Appl. Clay Sci., 21(2), 241-256 (2002). 

  29. L.A. Wendling, J.B. Harsh, C.D. Palmer, M.A. Hamilton, and M. Flury, "Cesium Sorption to Illite as Affected by Oxalate", Clays Clay Miner., 52(3), 375-381 (2004). 

  30. J. Wu, B. Li, J. Liao, Y. Feng, D. Zhang, J. Zhao, W. Wen, Y. Yang, and N. Liu, "Behavior and Analysis of Cesium Adsorption on Montmorillonite Mineral.", J. Environ. Radioact., 100(10), 914-920 (2009). 

  31. C. Liu, J.M. Zachara, S.C. Smith, J.P. McKinley, and C.C. Ainsworth, "Desorption Kinetics of Radiocesium from Subsurface Sediments at Hanford Site, USA", Geochim. Cosmochim. Acta, 67(16), 2893-2912 (2003). 

  32. C.W. Park, B.H. Kim, H.M. Yang, B.K. Seo, and K.W. Lee, "Enhanced Desorption of Cs from Clays by a Polymeric Cation-Exchange Agent", J. Hazard. Mater., 327, 127-134 (2017). 

  33. L.J. Poppe, V.F. Paskevich, J.C. Hathaway, and D.S. Blackwood. A Laboratory Manual for X-Ray Powder Diffraction, U.S. Geological Survey Open-File Report, 01-041 (2001). 

  34. D. Carroll, "Clay Minerals: A Guide to Their X-Ray Identification", Spec. Pap. Geol. Soc. Am., 126, 1-80 (1970). 

  35. P. Komadel, J. Madejova, M. Janek, W.P. Gates, R.J. Kirkpatrick, and J.W. Stucki, "Dissolution of Hectorite in Inorganic Acids", Clays Clay Miner., 44(2), 228-236 (1996). 

  36. D. Carroll and H.C. Starkey, "Reactivity of Clay Minerals with Acids and Alkalies", Clays Clay Miner., 19(5), 321-333 (1971). 

  37. J. Lee, S.M. Park, E.K. Jeon, and K. Baek, "Selective and Irreversible Adsorption Mechanism of Cesium on Illite", Appl. Geochemistry, 85, 188-193 (2017). 

  38. C.W. Park, S.M. Kim, I. Kim, I.H. Yoon, J. Hwang, J.H. Kim, H.M. Yang, and B.K. Seo, "Sorption Behavior of Cesium on Silt and Clay Soil Fractions", J. Environ. Radioact., 233, 106592 (2021). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로