$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 과학교육에서 탐구 관련 국외 연구 동향 -탐구의 인식과 관점, 전략과 지원, 교사 전문성의 관점에서-
International Research Trends Related to Inquiry in Science Education: Perception and Perspective on Inquiry, Support and Strategy for Inquiry, and Teacher Professional Development for Inquiry 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.41 no.1, 2021년, pp.33 - 46  

유은정 (한국교육과정평가원) ,  변태진 (한국교육과정평가원) ,  백종호 (한국교육과정평가원) ,  심현표 (한국교육과정평가원) ,  유금복 (한국교육과정평가원) ,  이동원 (한국교육과정평가원)

초록

과학교육에서 탐구는 중요한 위치를 차지하고 있으며, 탐구와 관련된 연구가 폭넓게 이루어지고 있다. 그러나 '탐구'라는 개념의 포괄성으로 인해 연구자마다 그 의미를 다르게 인식하고 있으며 접근 방법도 다양하다. 또한 과학교육에서 탐구를 활용한 수업의 성과가 실제학생들에게 유의미한 변화를 보장하는 것은 아니라는 비판이 제기되고 있다. 이에 본 연구는 과학교육에서 최근 3년간 탐구를 주제로 한 SSCI급 연구 논문의 동향을 살펴봄으로써 탐구와 관련된 연구내용을 탐색하고 추후 연구에 필요한 시사점을 도출하고자 하였다. 분석에 활용된 연구물은 International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, Science Education이며, 핵심 주제어에 "inquiry(enquiry)"를 직접적으로 제시하고 있는 연구물로 한정하였다. 추출된 논문 75편을 토대로 유목화 과정이 이루어졌고, 주제와 특징을 반영하여 귀납적으로 분석틀을 도출하였다. 탐구에 대한 인식 및 관점, 탐구 학습을 위한 전략 및 지원, 탐구 기반 수업을 위한 교사 전문성 발달의 세 가지 측면으로 나누어 각 범주별 구체적인 사례를 제시하였다. 과학 탐구에 대한 시사점을 살펴본 결과는 다음과 같다. 첫째, 탐구를 함축적 명제로 정의하거나 몇 개의 단계적 절차로 제시하기보다는 탐구의 의미를 보다 종합적이고 총체적으로 파악하도록 유도하고 있었다. 둘째, 탐구 기반의 수업이 과학의 인지적, 기능적, 정의적 영역의 모든 측면에서 효과적인가에 대해서는 그 한계를 명확히 제시하고, 맥락 의존적이고 교과 특이적인 탐구의 속성과 한계를 파악할 것을 강조하였다. 셋째, 과학 탐구 기반 수업에서 불확실성은 학습자가 탐구를 시작하고 관심을 갖도록 하는 데에는 도움이 될 수 있으나, 자료를 인지하여 지식을 재구성하는 과정에서는 명시적이고 구체적인 안내와 비계가 적절한 타이밍에 이루어져야 할 것이다.

Abstract AI-Helper 아이콘AI-Helper

Inquiry occupies an important place in science education, and research related to inquiry is widely conducted. However, due to the inclusiveness of the concept of "exploration," each researcher perceives its meaning differently, and approaches may vary. In addition, criticisms have been raised that ...

주제어

표/그림 (1)

참고문헌 (118)

  1. Adler, I., Schwartz, L., Madjar, N., & Zion, M. (2018). Reading between the lines: The effect of contextual factors on student motivation throughout an open inquiry process. Science Education, 102(4), 820-855. 

  2. Akuma, F. V., & Callaghan, R. (2019a). Teaching practices linked to the implementation of inquiry-based practical work in certain science classrooms. Journal of Research in Science Teaching, 56(1), 64-90. 

  3. Akuma, F. V., & Callaghan, R. (2019b). A systematic review characterizing and clarifying intrinsic teaching challenges linked to inquiry-based practical work. Journal of Research in Science Teaching, 56(5), 619-648. 

  4. Akuma, F. V., & Callaghan, R. (2019c). Characterising extrinsic challenges linked to the design and implementation of inquiry-based practical work. Research in Science Education, 49(6), 1677-1706. 

  5. Arsal, Z. (2017). The impact of inquiry-based learning on the critical thinking dispositions of pre-service science teachers. International Journal of Science Education, 39(10), 1326-1338. 

  6. Azevedo, F. S. (2018). An inquiry into the structure of situational interests. Science Education, 102(1), 108-127. 

  7. Balgopal, M. M., Casper, A. M. A., Atadero, R. A., & Rambo-Hernandez, K. E. (2017). Responses to different types of inquiry prompts: college students' discourse, performance, and perceptions of group work in an engineering class. International Journal of Science Education, 39(12), 1625-1647. 

  8. Battaglia, O. R., Di Paola, B., Persano Adorno, D., Pizzolato, N., & Fazio, C. (2019). Evaluating the effectiveness of modelling-oriented workshops for engineering undergraduates in the field of thermally activated phenomena. Research in Science Education, 49(5), 1395- 1413. 

  9. Bevins, S., Price, G., & Booth, J. (2019). The I files, the truth is out there: science teachers' constructs of inquiry. International Journal of Science Education, 41(4), 533-545. 

  10. Biggers, M. (2018). Questioning Questions: Elementary Teachers' Adaptations of Investigation Questions Across the Inquiry Continuum. Research in Science Education, 48(1), 1-28. 

  11. Brown, J. C. (2017). A metasynthesis of the complementarity of culturally responsive and inquiry-based science education in K-12 settings: Implications for advancing equitable science teaching and learning. Journal of Research in Science Teaching, 54(9), 1143-1173. 

  12. Bruckermann, T., Aschermann, E., Bresges, A., & Schluter, K. (2017). Metacognitive and multimedia support of experiments in inquiry learning for science teacher preparation. International Journal of Science Education, 39(6), 701-722. 

  13. Cairns, D. (2019). Investigating the relationship between instructional practices and science achievement in an inquiry-based learning environment. International Journal of Science Education, 41(15), 2113-2135. 

  14. Cairns, D., & Areepattamannil, S. (2019). Exploring the relations of inquiry-based teaching to science achievement and dispositions in 54 countries. Research in Science Education, 49(1), 1-23. 

  15. Cetin, P. S., Eymur, G., Southerland, S. A., Walker, J., & Whittington, K. (2018). Exploring the effectiveness of engagement in a broad range of disciplinary practices on learning of Turkish high-school chemistry students. International Journal of Science Education, 40(5), 473-497. 

  16. Chen, J., Wang, M., Grotzer, T. A., & Dede, C. (2018). Using a three-dimensional thinking graph to support inquiry learning. Journal of Research in Science Teaching, 55(9), 1239-1263. 

  17. Chi, S. H., Wang, Z., & Liu, X. (2019). Investigating disciplinary context effect on student scientific inquiry competence. International Journal of Science Education, 41(18), 2736-2764. 

  18. Chi, S., Liu, X., Wang, Z., & Won Han, S. (2018). Moderation of the effects of scientific inquiry activities on low SES students' PISA 2015 science achievement by school teacher support and disciplinary climate in science classroom across gender. International Journal of Science Education, 40(11), 1284-1304. 

  19. Crujeiras-Perez, B., & Jimenez-Aleixandre, M. P. (2019). Students' progression in monitoring anomalous results obtained in inquiry-based laboratory tasks. Research in Science Education, 49(1), 243-264. 

  20. Cruz-Guzman, M., Garcia-Carmona, A., & Criado, A. M. (2017). An analysis of the questions proposed by elementary pre-service teachers when designing experimental activities as inquiry. International Journal of Science Education, 39(13), 1755-1774. 

  21. Davis, J. P., & Bellocchi, A. (2018). Objectivity, subjectivity, and emotion in school science inquiry. Journal of Research in Science Teaching, 55(10), 1419-1447. 

  22. Doria, Y. J., Zohar, A., Fischer-Shachor, D., Kohan-Mass, J., & Carmi, M. (2018). Gender-fair assessment of young gifted students' scientific thinking skills. International Journal of Science Education, 40(6), 595-620. 

  23. Duncan Seraphin, K., Harrison, G. M., Philippoff, J., Brandon, P. R., Nguyen, T. T. T., Lawton, B. E., & Vallin, L. M. (2017). Teaching aquatic science as inquiry through professional development: Teacher characteristics and student outcomes. Journal of Research in Science Teaching, 54(9), 1219-1245. 

  24. Fitzgerald, M., Danaia, L., & McKinnon, D. H. (2019). Barriers inhibiting inquiry-based science teaching and potential solutions: Perceptions of positively inclined early adopters. Research in Science Education, 49(2), 543-566. 

  25. Fuhrmann, T., Schneider, B., & Blikstein, P. (2018). Should students design or interact with models? Using the bifocal modelling framework to investigate model construction in high school science. International Journal of Science Education, 40(8), 867-893. 

  26. Garcia-Carmona, A., Criado, A. M., & Cruz-Guzman, M. (2017). Primary pre-service teachers' skills in planning a guided scientific inquiry. Research in Science Education, 47(5), 989-1010. 

  27. Gray, R., & Rogan-Klyve, A. (2018). Talking modelling: examining secondary science teachers' modelling-related talk during a modelbased inquiry unit. International Journal of Science Education, 40(11), 1345-1366. 

  28. Herranen, J., Kousa, P., Fooladi, E., & Aksela, M. (2019). Inquiry as a context-based practice - a case study of pre-service teachers' beliefs and implementation of inquiry in context-based science teaching. International Journal of Science Education, 41(14), 1977-1998. 

  29. Hong, J. C., Hwang, M. Y., Tai, K. H., & Tsai, C. R. (2017). An exploration of students' science learning interest related to their cognitive anxiety, cognitive load, self-confidence and learning progress using inquiry-based learning with an iPad. Research in Science Education, 47(6), 1193-1212. 

  30. Jaber, L. Z., Dini, V., Hammer, D., & Danahy, E. (2018). Targeting disciplinary practices in an online learning environment. Science Education, 102(4), 668-692. 

  31. Jang, J. Y, & Hand, B. (2017). Examining the value of a scaffolded critique framework to promote argumentative and explanatory writings within an argument-based inquiry approach. Research in Science Education, 47(6), 1213-1231. 

  32. Kang, & Keinonen, T. (2017). The effect of inquiry-based learning experiences on adolescents' science-related career aspiration in the Finnish context. International Journal of Science Education, 39(12), 1669-1689. 

  33. Karvankova, P., & Popjakova, D. (2018). How to link geography, cross-curricular approach and inquiry in science education at the primary schools. International Journal of Science Education, 40(7), 707-722. 

  34. Kluge, A. (2019). Learning science with an interactive simulator: negotiating the practice-theory barrier. International Journal of Science Education, 41(8), 1-25. 

  35. Kruit, P. M., Oostdam, R. J., van den Berg, E., & Schuitema, J. A. (2018). Effects of explicit instruction on the acquisition of students' science inquiry skills in grades 5 and 6 of primary education. International Journal of Science Education, 40(4), 421-441. 

  36. Lamsa, J., Hamalainen, R., Koskinen, P., & Viiri, J. (2018). Visualising the temporal aspects of collaborative inquiry-based learning processes in technology-enhanced physics learning. International Journal of Science Education, 40(14), 1697-1717. 

  37. Le Hebela, F., Tiberghien, A., Montpied, P., & Fontanieu, V. (2019). Teacher prediction of student difficulties while solving a science inquiry task: example of PISA science items. International Journal of Science Education, 41(11), 1517-1540. 

  38. Leblebicioglu, G., Abik, N. M., Capkinoglu, E., Metin, D., Dogan, E. E., Cetin, P. S., & Schwartz, R. (2019). Science Camps for Introducing Nature of Scientific Inquiry Through Student Inquiries in Nature: Two Applications with Retention Study. Research in Science Education, 49(5), 1231-1255. 

  39. Lederman, J., Lederman, N., Bartels, S., Jimenez, J., Akubo, M., Aly, S., Bao, C., Blanquet, E., Blonder, R., Bologna Soares de Andrade, M., Buntting, C., Cakir, M., EL-Deghaidy, H., ElZorkani, A., Gaigher, E., Guo, S., Hakanen, A., Hamed Al-Lal, S., Han-Tosunoglu, C., ... Zhou, Q. (2019). An international collaborative investigation of beginning seventh grade students' understandings of scientific inquiry: Establishing a baseline. Journal of Research in Science Teaching, 56(4), 486-515. 

  40. Lee, H., Longhurst, M., & Campbell, T. (2017). Teacher learning in technology professional development and its impact on student achievement in science. International Journal of Science Education, 39(10), 1282-1303. 

  41. Lehtinen, A., Lehesvuori, S., & Viiri, J. (2019). The connection between forms of guidance for inquiry-based learning and the communicative approaches applied-a case study in the context of pre-service teachers. Research in Science Education, 49(6), 1547-1567. 

  42. Lotter, C. R., & Miller, C. (2017). Improving inquiry teaching through reflection on practice. Research in Science Education, 47(4), 913-942. 

  43. Martin, A., Park, S., & Hand, B. (2019). What happens when a teacher's science belief structure is in disequilibrium? entangled nature of beliefs and practice. Research in Science Education, 49(3), 885-920. 

  44. Merritt, E. G., Chiu, J., Peters-Burton, E., & Bell, R. (2018). Teachers' integration of scientific and engineering practices in primary classrooms. Research in Science Education, 48(6), 1321-1337. 

  45. Moon, A., Stanford, C., Cole, R., & Towns, M. (2017). Analysis of inquiry materials to explain complexity of chemical reasoning in physical chemistry students' argumentation. Journal of Research in Science Teaching, 54(10), 1322-1346. 

  46. Moote, J. (2019). Investigating the longer-term impact of the CREST inquiry-based learning programme on student self-regulated processes and related motivations: Views of students and teachers. Research in Science Education, 49(1), 265-294. 

  47. Mupira, P., & Ramnarain, U. (2018). The effect of inquiry-based learning on the achievement goal-orientation of grade 10 physical sciences learners at township schools in South Africa. Journal of Research in Science Teaching, 55(6), 810-825. 

  48. Nichols, K., Burgh, G., & Kennedy, C. (2017). Comparing two inquiry professional development interventions in science on primary students' questioning and other inquiry behaviours. Research in Science Education, 47(1). 

  49. Peel, A., Zangori, L., Friedrichsen, P., Hayes, E., & Sadler, T. (2019). Students' model-based explanations about natural selection and antibiotic resistance through socio-scientific issues-based learning. International Journal of Science Education, 41(4), 510-532. 

  50. Pongsophon, P., & Herman, B. C. (2017). A theory of planned behaviour-based analysis of TIMSS 2011 to determine factors influencing inquiry teaching practices in high-performing countries. International Journal of Science Education, 39(10), 1304-1325. 

  51. Ruppert, J., Duncan, R. G., & Chinn, C. A. (2019). Disentangling the role of domain-specific knowledge in student modeling. Research in Science Education, 49(3), 921-948. 

  52. Ryoo, K., & Bedell, K. (2017). The effects of visualizations on linguistically diverse students' understanding of energy and matter in life science. Journal of Research in Science Teaching, 54(10), 1274-1301. 

  53. Ryoo, K., & Bedell, K. (2019). Supporting linguistically diverse students' science learning with dynamic visualizations through discourse-rich practices. Journal of Research in Science Teaching, 56(3), 270-301. 

  54. Samarapungavan, A., Bryan, L., & Wills, J. (2017). Second graders' emerging particle models of matter in the context of learning through model-based inquiry. Journal of Research in Science Teaching, 54(8), 988-1023. 

  55. Schmid, S., & Bogner, F. X. (2017). How an inquiry-based classroom lesson intervenes in science efficacy, career-orientation and self-determination. International Journal of Science Education, 39(17), 2342-2360. 

  56. She, H. C., Lin, H. shyang, & Huang, L. Y. (2019). Reflections on and implications of the programme for international student assessment 2015 (PISA 2015) performance of students in Taiwan: The role of epistemic beliefs about science in scientific literacy. Journal of Research in Science Teaching, 56(10), 1309-1340. 

  57. Smit, R., Rietz, F., & Kreis, A. (2018). What are the effects of science lesson planning in peers?-analysis of attitudes and knowledge based on an actor-partner interdependence model. Research in Science Education, 48(3), 619-636. 

  58. Stender, A., Schwichow, M., Zimmerman, C., & Hartig, H. (2018). Making inquiry-based science learning visible: the influence of CVS and cognitive skills on content knowledge learning in guided inquiry. International Journal of Science Education, 40(15), 1812-1831. 

  59. Tang, N. E., Tsai, C. L., Barrow, L., & Romine, W. (2019). Impacts of enquiry-based science teaching on achievement gap between high-and-low SES students: findings from PISA 2015. International Journal of Science Education, 41(4), 448-470. 

  60. Terrazas-Arellanes, F. E., Gallard M, A. J., Strycker, L. A., & Walden, E. D. (2018). Impact of interactive online units on learning science among students with learning disabilities and English learners. International Journal of Science Education, 40(5), 498-518. 

  61. Tsybulsky, D., Dodick, J., & Camhi, J. (2018). The effect of field trips to university research labs on israeli high school students' NOS understanding. Research in Science Education, 48(6), 1247-1272. 

  62. van Aalderen-Smeets, S. I., Walma van der Molen, J. H., van Hest, E. G. W. C. M., & Poortman, C. (2017). Primary teachers conducting inquiry projects: effects on attitudes towards teaching science and conducting inquiry. International Journal of Science Education, 39(2), 238-256. 

  63. van der Graaf, J., van de Sande, E., Gijsel, M., & Segers, E. (2019). A combined approach to strengthen children's scientific thinking: direct instruction on scientific reasoning and training of teacher's verbal support. International Journal of Science Education, 41(9), 1119-1138. 

  64. van Riesen, S. A. N., Gijlers, H., Anjewierden, A., & de Jong, T. (2018). The influence of prior knowledge on experiment design guidance in a science inquiry context. International Journal of Science Education, 40(11), 1327-1344. 

  65. van Schijndel, T. J. P., Jansen, B. R. J., & Raijmakers, M. E. J. (2018). Do individual differences in children's curiosity relate to their inquiry-based learning? International Journal of Science Education, 40(9), 996-1015. 

  66. van Uum, M. S. J., Verhoeff, R. P., & Peeters, M. (2017). Inquiry-based science education: scaffolding pupils' self-directed learning in open inquiry. International Journal of Science Education, 39(18), 2461-2481. 

  67. Villanueva, M. G., Hand, B., Shelley, M., & Therrian, W. (2019). The conceptualization and development of the practical epistemology in science survey(SPSS). Research in Science Education, 49(3), 635-655. 

  68. Vorholzer, A., & von Aufschnaiter, C. (2019). Guidance in inquiry-based instruction-an attempt to disentangle a manifold construct. International Journal of Science Education, 41(11), 1562-1577. 

  69. Wagh, A., Cook-Whitt, K., & Wilensky, U. (2017). Bridging inquiry-based science and constructionism: Exploring the alignment between students tinkering with code of computational models and goals of inquiry. Journal of Research in Science Teaching, 54(5), 615-641. 

  70. Walan, S., & Mc Ewen, B. (2017). Primary teachers' reflections on inquiryand context-based science education. Research in Science Education, 47(2), 407-426. 

  71. Watkins, J., Hammer, D., Radoff, J., Jaber, L. Z., & Phillips, A. M. (2018). Positioning as not-understanding: The value of showing uncertainty for engaging in science. Journal of Research in Science Teaching, 55(4), 573-599. 

  72. Williams, R. T., Pringle, R. M., & Kilgore, K. L. (2019). A Practitioner's inquiry into vocabulary building strategies for native spanish speaking ELLs in inquiry-based science. Research in Science Education, 49(4), 989-1000. 

  73. Wilmes, S. E. D., & Siry, C. (2018). Interaction rituals and inquiry-based science instruction: Analysis of student participation in small-group investigations in a multilingual classroom. Science Education, 102(5), 1107-1128. 

  74. Wu, P. H., Kuo, C. Y., Wu, H. K., Jen, T. H., & Hsu, Y. S. (2018). Learning benefits of secondary school students' inquiry-related curiosity: A cross-grade comparison of the relationships among learning experiences, curiosity, engagement, and inquiry abilities. Science Education, 102(5), 917-950. 

  75. Zhang, L. (2018). Withholding answers during hands-on scientific investigations? Comparing effects on developing students' scientific knowledge, reasoning, and application. International Journal of Science Education, 40(4), 459-469. 

  76. Baek, J., Byun, T., Lee, D., & Shim, H-P. (2020). An investigation on the assessment tool and status of assessment in the 'scientific inquiry experiment' of the 2015 revised curriculum. Journal of the Korean Association for Science Education, 40(5), 515-529. 

  77. Barrow, L. H. (2006). A brief history of inquiry: From dewey to standards. Journal of Science Teacher Education, 17(3), 265-278. 

  78. Bronfenbrenner, U. (1993). The ecology of cognitive development: research models and fugitive findings. In R. Wonziak & K. Fischer (Eds.), Development in context: acting and thinking in specific environments (pp. 3-44). Hillsdale: Erlbaum. 

  79. Byun, T. (2017). A literature review on media-based learning in science. Journal of the Korean Association for Science Education, 37(3), 417-427. 

  80. Byun, T., Baek, J., Shim, H.-P., & Lee, D. (2019). An investigation on the implementation of the 'scientific inquiry experiment' of the 2015 revised curriculum. Journal of the Korean Association for Science Education, 39(5), 669-679. 

  81. Capps, D. K., Crawford, B. A., & Constas, M. A. (2012). A review of empirical literature on inquiry PD: alignment with best practices and a critique of the findings. Journal of Science Teacher Education, 23, 291-318. 

  82. Collette, A. T. & Chiappetta, E. L. (1989). Science instruction in the middle and secondary schools (2nd ed.). OH: Merill Publishing Company. 

  83. Crawford, B. A. (2007). Learning to teach science as inquiry in the rough and tumble of practice. Journal of Research in Science Teaching, 44(4), 613-642. 

  84. Davis, E. A., & Linn, M. C. (2000). Scaffolding students' knowledge integration: Prompts for reflection in KIE. International Journal of Science Education, 22(8), 819-837. 

  85. Duschl, R. A., Schweingruber, H. A., & Shouse, A.W. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academy Press. 

  86. Freese, A. R. (1999). The role of reflection on preservice teachers' development in the context of a professional development school. Teaching and Teacher Education, 15, 895-909 

  87. Gunstone, R. F., & Champagne, A. B. (1990). Promoting conceptual change in the laboratory. In E. Hegarty-Hazel (Eds.), The student laboratory and the science curriculum (pp. 159-182). London: Routledge. 

  88. Han, S., Choi, S., & Noh, T. (2012) Epistemological views of middle school students on scientific inquiry. Journal of the Korean Association for Science Education, 32(1), 82-94. 

  89. Hattie, J. A. C. (2009). Visible learning: A synthesis of 800+ meta-analyses on achievement. Abingdon: Routledge. 

  90. Hodson, D. (2009). Teaching and learning about science: Language, theories, methods, history, traditions and values. Rotterdam, The Netherlands: Sense Publishers. 

  91. Hwang, S. (2018). Research trend on the sociocultural approaches to science learning identity for the realization of 'Science Education for All'. Journal of the Korean Association for Science Education, 38(2), 187-202. 

  92. Jho, H. (2015). A literature review of studies on decision-making in socio-scientific issues. Journal of the Korean Association for Science Education, 35(5), 791-936. 

  93. Kolb, D. A. (1984). Experiential learning: experience as the source of learning and development. Englewood Cliffs: Prentice Hall. 

  94. Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J. A., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3&4), 313-350. 

  95. Kwon, N. & Ahn, J. (2012). The analysis on domestic research trends for convergence and integrated science education. Journal of the Korean Association for Science Education, 32(2), 265-278. 

  96. Lazonder, A., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: effects of guidance. Review of Educational Research, 86(3), 681-718. 

  97. Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners' understandings about scientific inquiry- The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51(1), 65-83. 

  98. Lee, B., Park, B., & Kim, H. (2007). Analyses of the basic inquiry process in korean 3-10 grade science textbooks: Focused on observation and measurement. Journal of the Korean Association for Science Education, 27(5), 421-431. 

  99. Lee, E. & Kang, S. (2012). Sub-component extraction of inquiry skills for direct teaching of inquiry skills. Journal of the Korea Association for Science Education, 32(2), 236-264. 

  100. Lee, J. Park, H., Jung, Y. & Noh, J. (2015). Research trends of web-based inquiry learning effectiveness in science education: A review of publications in selected journals from 2000 to 2014. Journal of the Korean Association for Science Education, 38(2), 187-202. 35(4), 565-572. 

  101. McCormack, A. J. (1992). Trends and issues in science curriculum. in P. B. Uhrmacher et al., (Eds.), Science curriculum resource handbook: A practical guide for K-12 science curriculum, NY: Kraus International Publications, 16-41. 

  102. Ministry of Education (MOE) (2015). 2015 revised Science National Curriculum. No. 2015-74. Ministry of Education, Sejong, Korea. 

  103. National Research Council(NRC) (2012). A framework for K-12 science education: practices, crosscutting concepts, and core idea. Washington, DC: National Academy Press. 

  104. National Research Council. (NRC) (1996). National science education standards. Washington, DC: National Academy Press. 

  105. Nellist, J. & Nicholl, B. (1987). ASE Science teachers' handbook. London: Hutchinson. 

  106. Nivalainen, V., Asikainen, M. A., Sormunen, K., & Hirvonen, P. E. (2010). Preservice and inservice teachers' challenges in the planning of practical work in physics. Journal of Science Teacher Education, 21(4), 393-409. 

  107. Osborne, J., Simon, S., & Collins, S. (2003). Attitudes toward science: A review of the literature and its implications. International Journal of Science Education, 25, 1049-1079. 

  108. Paccon, M. Q. (2002). Qualitative research & evaluation method. Thousand Oaks, CA: Sage Publication. 

  109. Postholm, M. B. (2012). Teachers' professional development: a theoretical review. Educational Research, 54(4), 405-429. 

  110. Sanderson, B. A., & Kratochvil, D. W. (1971). Science-A Process Approach, product development report no. 8. Washington, D.C.: Office of Program Planning and Evaluation. (ERIC Document Reproduction Service No. ED 064-066) 

  111. Sandoval, W. (2005). Understanding students' practical epistemologies and their influence. Science Education, 89, 634-656. 

  112. Schon, D. (1987). A review of educating the reflective practitioner. San Francisco: Jossey-Bass 

  113. Schwartz, R. S., & Lederman, N. G. (2008). What scientists say: Scientists' views of nature of science and relation to science context. International Journal of Science Education, 30(6), 727-771. 

  114. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-31. 

  115. Teacher Professional Growth Consortium. (1994). Modelling teacher professional growth. University of Melbourne, Unpublished working document. 

  116. van Aalderen-Smeets, S. I., & Walma van der Molen, J. H. (2013). Measuring primary teachers' attitudes toward teaching science: Development of the dimensions of attitude toward science (DAS) instrument. International Journal of Science Education, 35, 577-600. 

  117. Vygotsky, L. S. (1978). Mind in Society: Development of Higher Psychological Processes. MA: Harvard University Press. 

  118. Welch, W. W. (1981). Inquiry in school science. In N. Harms, & R. Yager, Project synthesis, What research says, Vol. 3 NSTA. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로