$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

대장암 진단용 단백질 바이오마커 측정을 위한 바이오센서 개발의 최신 연구 동향
Recent Research Trend of Biosensors for Colorectal Cancer Specific Protein Biomarkers 원문보기

공업화학 = Applied chemistry for engineering, v.32 no.3, 2021년, pp.253 - 259  

리징징 (경북대학교 자연과학대학 화학과) ,  스윈페이 (경북대학교 자연과학대학 화학과) ,  이혜진 (경북대학교 자연과학대학 화학과)

Abstract AI-Helper 아이콘AI-Helper

Colorectal cancer (CRC) is one of the most prevalent diseases in modern society, constituting a serious threat to global health. Currently, routine clinical screening and early removal of precancerous polyps are the most successful methods for reducing CRC incidence and mortality. However, the high ...

주제어

표/그림 (6)

참고문헌 (49)

  1. A. J. M. Watson and P. D. Collins, Colon cancer: A civilization disorder, Dig. Dis., 29, 222-228 (2011). 

  2. Cancer, https://www.who.int/health-topics/cancer#tabtab_1 (Access on April 23, 2021). 

  3. E. Ferlizza, R. Solmi, M. Sgarzi, L. Ricciardiello, and M. Lauriola, The roadmap of colorectal cancer screening, Cancers, 13, 1101 (2021). 

  4. J. Quinchia, D. Echeverri, A. F. Cruz-Pacheco, M. E. Maldonado, and J. Orozco, Electrochemical biosensors for determination of colorectal tumor biomarkers, Micromachines, 11, 411 (2020). 

  5. W. Fei, L. Chen, J. Chen, Q. Shi, L. Zhang, S. Liu, L. Li, L. Zheng, and X. Hu, RBP4 and THBS2 are serum biomarkers for diagnosis of colorectal cancer, Oncotarget, 8, 92254-92264 (2017). 

  6. S. H. Lee, Y. E. Park, J. E. Lee, and H. J. Lee, A surface plasmon resonance biosensor in conjunction with a DNA aptamer-antibody bioreceptor pair for heterogeneous nuclear ribonucleoprotein A1 concentrations in colorectal cancer plasma solutions, Biosens. Bio-electron., 154, 112065 (2020). 

  7. U. Ladabaum, J. A. Dominitz, C. Kahi, and R. E. Schoen, Strategies for colorectal cancer screening, Gastroenterology, 158, 418-432 (2020). 

  8. M. F. Kaminski, D. J. Robertson, C. Senore, and D. K. Rex, Optimizing the quality of colorectal cancer screening worldwide, Gastroenterology, 158, 404-417 (2020). 

  9. P. Kuppusamy, N. Govindan, M. M. Yusoff, and S. J. A. Ichwan, Proteins are potent biomarkers to detect colon cancer progression, Saudi J. Biol. Sci., 24, 1212-1221 (2017). 

  10. M. Barani, M. Bilal, A. Rahdar, R. Arshad, A. Kumar, H. Hamishekar, and G. Z. Kyzas, Nanodiagnosis and nanotreatment of colorectal cancer: An overview, J. Nanopart. Res., 23, 18 (2021). 

  11. P. Butmee, G. Tumcharern, G. Thouand, K. Kalcher, and A. Samphao, An ultrasensitive immunosensor based on manganese dioxide-graphene nanoplatelets and core shell Fe 3 O 4 @Au nanoparticles for label-free detection of carcinoembryonic antigen, Bioelectrochemistry, 132, 107452 (2020). 

  12. G. Paniagua, A. Villalonga, M. Eguilaz, B. Vegas, C. Parrado, G. Rivas, P. Diez, and R. Villalonga, Amperometric aptasensor for carcinoembryonic antigen based on the use of bifunctionalized Janus nanoparticles as biorecognition-signaling element, Anal. Chim. Acta, 1061, 84-91 (2019). 

  13. G. Ibanez-Redin, E. M. Materon, R. H. M. Furuta, D. Wilson, G. F. do Nascimento, M. E. Melendez, A. L. Carvalho, R. M. Reis, O. N. Oliveira, Jr., and D. Goncalves, Screen-printed electrodes modified with carbon black and polyelectrolyte films for determination of cancer marker carbohydrate antigen 19-9, Microchim. Acta, 187, 417 (2020). 

  14. G. Ibanez-Redin, N. Joshi, G. F. do Nascimento, D. Wilson, M. E. Melendez, A. L. Carvalho, R. M. Reis, D. Goncalves, and O. N. Oliveira, Jr., Determination of p53 biomarker using an electrochemical immunoassay based on layer-by-layer films with NiFe 2 O 4 nanoparticles, Microchim. Acta, 187, 619 (2020). 

  15. R. Elshafey, P. Brisebois, H. Abdulkarim, R. Izquierdo, A. C. Tavares, and M. Siaj, Effect of graphene oxide sheet size on the response of a label-free voltammetric immunosensor for cancer marker VEGF, Electroanalysis, 32, 2205-2212 (2020). 

  16. G. Ibanez-Redin, R. H. M. Furuta, D. Wilson, F. M. Shimizu, E. M. Materon, L. Arantes, M. E. Melendez, A. L. Carvalho, R. M. Reis, M. N. Chaur, D. Goncalves, and O. N. Oliveira, Jr., Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9, Mater. Sci. Eng. C, 99, 1502-1508 (2019). 

  17. A. Paul, C. M. S., E. Primiceri, D. N. Srivastava, and G. Maruccio, Picomolar detection of retinol binding protein 4 for early management of type II diabetes, Biosens. Bioelectron., 128, 122-128 (2019). 

  18. E. B. Aydin, Highly sensitive impedimetric immunosensor for determination of interleukin 6 as a cancer biomarker by using conjugated polymer containing epoxy side groups modified disposable ITO electrode, Talanta, 215, 120909 (2020). 

  19. E. B. Aydin, M. Aydin, and M. K. Sezginturk, A novel electrochemical immunosensor based on acetylene black/epoxy-substituted-polypyrrole polymer composite for the highly sensitive and selective detection of interleukin 6, Talanta, 222, 121596 (2021). 

  20. S. Verma, A. Singh, A. Shukla, J. Kaswan, K. Arora, J. Ramirez-Vick, P. Singh, and S. P. Singh, Anti-IL8/AuNPs-rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer, ACS Appl. Mater. Interfaces, 9, 27462-27474 (2017). 

  21. N. Pachauri, G. Lakshmi, S. Sri, P. K. Gupta, and P. R. Solanki, Silver molybdate nanoparticles based immunosensor for the non-invasive detection of Interleukin-8 biomarker, Mater. Sci. Eng. C, 113, 110911 (2020). 

  22. K. Zhang, S. Lv, Q. Zhou, and D. Tang, CoOOH nanosheets-coated g-C 3 N 4 /CuInS 2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction, Sens. Actuators B Chem., 307, 127631 (2020). 

  23. Y. Wang, S. Sun, J. Luo, Y. Xiong, T. Ming, J. Liu, Y. Ma, S. Yan, Y. Yang, Z. Yang, J. Reboud, H. Yin, J. M. Cooper, and X. Cai, Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR, Microsyst. Nanoeng., 6, 1-9 (2020). 

  24. S. Sun, Y. Wang, T. Ming, J. Luo, Y. Xing, J. Liu, Y. Xiong, Y. Ma, S. Yan, Y. Yang, and X. Cai, An origami paper-based nanoformulated immunosensor detects picograms of VEGF-C per milliliter of blood, Commun. Biol., 4, 121 (2021). 

  25. J. Shu and D. Tang, Recent advances in photoelectrochemical sensing: From engineered photoactive materials to sensing devices and detection modes, Anal. Chem., 92, 363-377 (2020). 

  26. A. Devadoss, P. Sudhagar, C. Terashima, K. Nakata, and A. Fujishima, Photoelectrochemical biosensors: new insights into promising photoelectrodes and signal amplification strategies, J. Photochem. Photobiol. C, 24, 43-63 (2015). 

  27. S. Lee and H. J. Lee, Recent research trend in lateral flow immunoassay strip (LFIA) with colorimetric method for detection of cancer biomarkers, Appl. Chem. Eng., 31, 585-590 (2020). 

  28. L. Anfossi, F. Di Nardo, S. Cavalera, C. Giovannoli, and C. Baggiani, Multiplex lateral flow immunoassay: An overview of strategies towards high-throughput point-of-need testing, Biosensors, 9, 1-14 (2019). 

  29. M. Sajid, A.-N. Kawde, and M. Daud, Designs, formats and applications of lateral flow assay: A literature review, J. Saudi Chem. Soc., 19, 689-705 (2015). 

  30. S. Kim, A. W. Wark, and H. J. Lee, Femtomolar detection of Tau proteins in undiluted plasma using surface plasmon resonance, Anal. Chem., 88, 7793-7799 (2016). 

  31. S. H. Baek, H. W. Song, S. Lee, J.-E. Kim, Y. H. Kim, J. S. Wi, J. G. Ok, J. S. Park, S. Hong, M. K. Kwak, H. J. Lee, and S.-W. Nam, Gold nanoparticle-enhanced and roll-to-roll nanoimprinted LSPR platform for detecting interleukin-10, Front. Chem., 8, 285 (2020). 

  32. B. Shao, and Z. Xiao, Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors - A review, Anal. Chim. Acta, 1114, 74-84 (2020). 

  33. K.-H. Chen, M.-J. Pan, Z. Jargalsaikhan, T.-O. Ishdorj, and F.-G. Tseng, Development of surface-enhanced raman scattering (SERS)-based surface-corrugated nanopillars for biomolecular detection of colorectal cancer, Biosensors, 10, 163 (2020). 

  34. V. Moisoiu, A. Stefancu, D. Gulei, R. Boitor, L. Magdo, L. Raduly, S. Pasca, P. Kubelac, N. Mehterov, V. Chis, M. Simon, M. Muresan, A. I. Irimie, M. Baciut, R. Stiufiuc, I. E. Pavel, P. Achimas-Cadariu, C. Ionescu, V. Lazar, V. Sarafian, I. Notingher, N. Leopold, and I. Berindan-Neagoe, SERS-based differential diagnosis between multiple solid malignancies: Breast, colorectal, lung, ovarian and oral cancer, Int. J. Nanomedicine, 14, 6165-6178 (2019). 

  35. T. Mahmoudi, B. Shirdel, B. Mansoori, and B. Baradaran, Dual sensitivity enhancement in gold nanoparticle-based lateral flow immunoassay for visual detection of carcinoembryonic antigen, Anal. Sci. Adv., 1, 161-172 (2020). 

  36. D. Huang, H. Ying, D. Jiang, F. Liu, Y. Tian, C. Du, L. Zhang, and X. Pu, Rapid and sensitive detection of interleukin-6 in serum via time-resolved lateral flow immunoassay, Anal. Biochem., 588, 113468 (2020). 

  37. Y. Huang, Y. Wen, K. Baryeh, S. Takalkar, M. Lund, X. Zhang, and G. Liu, Lateral flow assay for carbohydrate antigen 19-9 in whole blood by using magnetized carbon nanotubes, Microchim. Acta, 184, 4287-4294 (2017). 

  38. V. Ranganathan, S. Srinivasan, A. Singh, and M. C. DeRosa, An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2), Anal. Biochem., 588, 113471 (2020). 

  39. M. L. Ermini, X. Chadtova Song, T. Springer, and J. Homola, Peptide functionalization of gold nanoparticles for the detection of carcinoembryonic antigen in blood plasma via SPR-based biosensor, Front. Chem., 7, 40 (2019). 

  40. H. Medetalibeyoglu, G. Kotan, N. Atar, and M. L. Yola, A novel sandwich-type SERS immunosensor for selective and sensitive carcinoembryonic antigen (CEA) detection, Anal. Chim. Acta, 1139, 100-110 (2020). 

  41. J. Tang, L. Wu, J. Lin, E. Zhang, and Y. Luo, Development of quantum dot-based fluorescence lateral flow immunoassay strip for rapid and quantitative detection of serum interleukin-6, J. Clin. Lab. Anal., 35, e23752 (2021). 

  42. P. Li, F. Long, W. Chen, J. Chen, P. K. Chu, and H. Wang, Fundamentals and applications of surface-enhanced Raman spectroscopy-based biosensors, Curr. Opin. Biomed. Eng., 13, 51-59 (2020). 

  43. A. Roointan, T. Ahmad Mir, S. Ibrahim Wani, R. Mati Ur, K. K. Hussain, B. Ahmed, S. Abrahim, A. Savardashtaki, G. Gandomani, M. Gandomani, R. Chinnappan, and M. H. Akhtar, Early detection of lung cancer biomarkers through biosensor technology: A review, J. Pharm. Biomed. Anal., 164, 93-103 (2019). 

  44. G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications, Sensors, 15, 30011-30031 (2015). 

  45. P. Yanez-Sedeno, S. Campuzano, and J. M. Pingarron, Multiplexed electrochemical immunosensors for clinical biomarkers, Sensors, 17, 965 (2017). 

  46. L. Huang, S. Tian, W. Zhao, K. Liu, X. Ma, and J. Guo, Multiplexed detection of biomarkers in lateral-flow immunoassays, Analyst, 145, 2828-2840 (2020). 

  47. Y. Gao, W. Huo, L. Zhang, J. Lian, W. Tao, C. Song, J. Tang, S. Shi, and Y. Gao, Multiplex measurement of twelve tumor markers using a GMR multi-biomarker immunoassay biosensor, Biosens. Bioelectron., 123, 204-210 (2019). 

  48. M. Johari-Ahar, P. Karami, M. Ghanei, A. Afkhami, and H. Bagheri, Development of a molecularly imprinted polymer tailored on disposable screen-printed electrodes for dual detection of EGFR and VEGF using nano-liposomal amplification strategy, Biosens. Bioelectron., 107, 26-33 (2018). 

  49. R.-I. Stefan-van Staden, R.-M. Ilie-Mihai, and S. Gurzu, Simultaneous determination of carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), and serum protein p53 in biological samples with protoporphyrin IX (PIX) used for recognition by stochastic microsensors, Anal. Lett., 53, 2545-2558 (2020). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로