$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고당 및 올레산으로 유도된 간세포에서의 염증반응에 대한 말차(Camellia sinensis) 추출물의 보호효과
Protective effect of matcha green tea (Camellia sinensis) extract on high glucose- and oleic acid-induced hepatic inflammatory effect 원문보기

한국식품과학회지 = Korean journal of food science and technology, v.53 no.3, 2021년, pp.267 - 277  

김종민 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ,  이욱 (국립산림과학원 산림특용자원연구과) ,  강진용 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ,  박선경 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ,  신은진 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ,  문종현 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ,  김민지 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ,  이효림 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ,  김길한 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ,  정혜린 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ,  박효원 (국립산림과학원 산림특용자원연구과) ,  김종철 ((재)하동녹차연구소) ,  허호진 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원)

초록
AI-Helper 아이콘AI-Helper

본 연구는 가루녹차의 가공품인 말차를 이용하여 항산화 평가와 고당으로 유도된 간세포에서의 간세포 보호효과와 지방간 개선 활성을 평가하기 위해 진행되었다. 말차의 catechin 함량과 총 페놀성 화합물총 플라보노이드 화합물의 함량은 잎 녹차보다 우수한 함량을 나타내었으며, 라디칼 소거활성과 지질과산화물 억제활성 역시 잎 녹차보다 우수한 것을 확인하였다. 또한, 항당뇨 활성을 나타내는 α-glucosidase, α-amylase 및 최종당화산물에 대한 우수한 억제활성을 확인하였다. In vitro 간세포 보호효과를 평가한 결과, 말차는 효과적으로 산화적 스트레스 및 고당으로 인한 활성산소 생성 억제활성과 간세포 생존율 나타내었다. 또한, oleic acid로 유도된 지방 축적에 대한 말차 추출물의 억제활성을 확인하였으며, 지방간으로 인한 염증반응에 대한 조절을 확인하였다. 이러한 연구 결과를 바탕으로 녹차의 가공품 중 하나인 말차는 가공 전 잎 녹차에 비해 우수한 카테킨 함량과 항산화 활성을 지니며, 탄수화물의 섭취를 억제해주는 소화효소의 활성을 억제하여 간세포의 지질축적을 억제하는 데 도움을 줄 수 있을 뿐만 아니라 염증 감소에 도움을 줄 수 있는 소재로서의 가능성을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

To evaluate hepatoprotective effects, the antioxidant capacities of matcha green tea extract (Camellia sinenesis) were compared to those of green leaf tea and the anti-inflammatory activities in HepG2 cells were investigated. Evaluation of the total phenolic and total flavonoid content, 2,2'-azino-b...

주제어

표/그림 (7)

참고문헌 (54)

  1. Abeysinghe DC, Li X, Sun C, Zhang W, Zhou C, Chen K. Biactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem. 104: 1338-1344 (2007) 

  2. Abreu RV, Silva-Oliveira EM, Moraes MFD, Pereira GS, Moraes-Santos T. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains. Pharmacol. Biochem. Behav. 99: 659-664 (2011) 

  3. Angulo P. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346: 1221-1231 (2002) 

  4. Apostolidis E, Kwon YI, Shetty K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innov. Food Sci. Emerg. Technol. 8: 46-54 (2007) 

  5. Bak MJ, Jun M, Jeong WS. Antioxidant and hepatoprotective effects of the red ginseng essential oil in H 2 O 2 -treated HepG2 cells and CCl 4 -treated mice. Int. J. Mol. Sci. 13: 2314-2330 (2012) 

  6. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) 

  7. Boden G, Cheung P, Stein TP, Kresge K, Mozzoli M. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am. J. Physiol.-Endocrinol. Metab. 283: 2-19 (2002) 

  8. Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea-a review. J. Am. Coll. Nutr. 25: 79-99 (2006) 

  9. Chang JJ, Hsu MJ, Huang HP, Chung DJ, Chang YC, Wang CJ. Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. J. Agric. Food Chem. 61: 6069-6076 (2013) 

  10. Chen Q, Wang T, Li J, Wang S, Qiu F, Yu H, Zhang Y, Wang T. Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD). Nutrients 9: 96 (2017) 

  11. Cremonini E, Oteiza PI. (-)-Epicatechin and its metabolites prevent palmitate-induced NADPH oxidase upregulation, oxidative stress and insulin resistance in HepG2 cells. Arch. Biochem. Biophys. 646: 55-63 (2018) 

  12. Di Lorenzo A, Nabavi SF, Sureda A, Moghaddam AH, Khanjani S, Arcidiaco P, Daglia M. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Mol. Nutr. Food Res. 60: 566-579 (2016) 

  13. Ehrchen JM, Sunderkotter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J. Leukoc. Biol. 86: 557-566 (2009) 

  14. Endo M, Masaki T, Seike M, Yoshimatsu H. TNF-α induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c). Exp. Biol. Med. 232: 614-621 (2007) 

  15. Fujiyama Y, Hokari R, Miura S, Watanabe C, Komoto S, Oyama T, Kurihara C, Nagata H, Hibi T. Butter feeding enhances TNF-α production from macrophages and lymphocyte adherence in murine small intestinal microvessels. J. Gastroenterol. Hepatol. 22: 1838-1845 (2007) 

  16. Gao W, Du X, Lei L, Wang H, Zhang M, Wang Z, Li X, Liu G, Li X. NEFA-induced ROS impaired insulin signalling through the JNK and p38MAPK pathways in non-alcoholic steatohepatitis. J. Cell. Mol. Med. 22: 3408-3422 (2018) 

  17. Gua J, Jin YS, Han W, Shim TH, Sa JH, Wang MH. Studies for component analysis, antioxidative activity and α-glucosidase inhibitory activity from Equisetum arvense. Appl. Biol. Chem. 49: 77-81 (2006) 

  18. Hanhineva K, Torronen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkanen H, Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 11: 1365-1402 (2010) 

  19. Heo HJ, Cho HY, Hong B, Kim HK, Kim EK, Kim BG, Shin DH. Protective effect of 4', 5-dihydroxy-3', 6, 7-trimethoxyflavone from Artemisia asiatica against Aβ-induced oxidative stress in PC12 cells. Amyloid 8: 194-201 (2001) 

  20. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 338: 694-699 (2005) 

  21. Jeong CH, Choi GN, Kwak JH, Kim JH, Choi SG, Shim KH, Heo HJ. In vitro antioxidant activities of cocoa phenolics. Korean J. Food Preserv. 17: 100-106 (2010) 

  22. Jeong EH, Jun DW, Cho YK, Choe YG, Ryu S, Lee SM, Jang EC. Regional prevalence of non-alcoholic fatty liver disease in Seoul and Gyeonggi-do, Korea. Clin. Mol. Hepatol. 19: 266-272 (2013) 

  23. Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PloS One 7: 47713 (2012) 

  24. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81: 321-326 (2003) 

  25. Kim JG, Jo SH, Ha KS, Kim SC, Kim YC, Apostolidis E, Kwon YI. Effect of long-term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action. BMC Complement. Altern. Med. 14: 272 (2014) 

  26. Kim JM, Lee U, Kang JY, Park SK, Kim JC, Heo HJ. Matcha improves metabolic imbalance-induced cognitive dysfunction. Oxidative Med. Cell. Longev. 2020:19 (2020) 

  27. Kim JM, Park SK, Kang JY, Park SB, Yoo SK, Han HJ, Cho KH, Kim JC, Heo HJ. Green tea seed oil suppressed Aβ 1-42 -induced behavioral and cognitive deficit via the Aβ-related Akt pathway. Int. J. Mol. Sci. 20: 1865 (2019) 

  28. Kumar S, Narwal S, Kumar V, Prakash O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev. 5: 19 (2011) 

  29. Li T, Liu J, Zhang X, Ji G. Antidiabetic activity of lipophilic (-)-epigallocatechin-3-gallate derivative under its role of α-glucosidase inhibition. Biomed. Pharmacother. 61: 91-96 (2007) 

  30. Lim HD, Kim YS, Ko SH, Yoon IJ, Cho SG, Chun YH, Choi BJ, Kim EC. Cytoprotective and anti-inflammatory effects of melatonin in hydrogen peroxide-stimulated CHON-001 human chondrocyte cell line and rabbit model of osteoarthritis via the SIRT1 pathway. J. Pineal Res. 53: 225-237 (2012) 

  31. Liu Z, Li Q, Huang J, Liang Q, Yan Y, Lin H, Xiao W, Lin Y, Zhang S, Tan B, Luo G. Proteomic analysis of the inhibitory effect of epigallocatechin gallate on lipid accumulation in human HepG2 cells. Proteome Sci. 11: 32 (2013) 

  32. McPherson JD, Shilton BH, Walton DJ. Role of fructose in glycation and cross-linking of proteins. Biochemistry 27: 1901-1907 (1988) 

  33. Mehra P, Koul A, Bansal DD. Studies on antioxidant role of (+)-catechin hydrate in high sucrose high fat diet induced oxidative stress. Am. J. Biomed. Sci. 5: 161-170 (2013) 

  34. Musso G, Cassader M, De Michieli F, Rosina F, Orlandi F, Gambino R. Nonalcoholic steatohepatitis versus steatosis: adipose tissue insulin resistance and dysfunctional response to fat ingestion predict liver injury and altered glucose and lipoprotein metabolism. Hepatology 56: 933-942 (2012) 

  35. Nam SM, Kang IJ, Shin MH. Anti-diabetic and anti-oxidative activities of extracts from Crataegus pinnatifida. J. East Asian Soc. Diet. Life 25: 270-277 (2015) 

  36. Nass N, Bartling B, Santos AN, Scheubel RJ, Borgermann J, Silber RE, Simm A. Advanced glycation end products, diabetes and ageing. Z. Gerontol. Geriatr. 40: 349-356 (2007) 

  37. Nyambe-Silavwe H, Villa-Rodriguez JA, Ifie I, Holmes M, Aydin E, Jensen JM, Williamson G. Inhibition of human α-amylase by dietary polyphenols. J. Funct. Food. 19: 723-732 (2015) 

  38. Oboh G, Ogunsuyi OB, Ogunbadejo MD, Adefegha SA. Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. J. Food Drug Anal. 24: 627-634 (2016) 

  39. Ortiz-Lopez L, Marquez-Valadez B, Gomez-Sanchez A, Silva-Lucero MDC, Torres-Perez M, Tellez-Ballesteros RI, Ichwan M, MerazRios MA, Kempermann G, Ramirez-Rodriguez GB. Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience 322: 208-220 (2016) 

  40. Park CS. Component and quality characteristics of powdered green tea cultivated in Hwagae area. Korean J. Food Preserv. 12: 36-42 (2005) 

  41. Park SH, Jeon WK, Kim SH, Kim HJ, Park DI, Cho YK, Sung IK, Sohn CI, Keum DK, Kim BI. Prevalence and risk factors of nonalcoholic fatty liver disease among Korean adults. J. Gastroenterol. Hepatol. 21: 138-143 (2006) 

  42. Rutter K, Sell DR, Fraser N, Obrenovich M, Zito M, Starke-Reed P, Monnier VM. Green tea extract suppresses the age-related increase in collagen crosslinking and fluorescent products in C57BL/6 mice. Int. J. Vitam. Nutr. Res. 73: 453-460 (2003) 

  43. Sakurai K, Shen C, Ezaki Y, Inamura N, Fukushima Y, Masuoka N, Hisatsune T. Effects of matcha green tea powder on cognitive functions of community-dwelling elderly individuals. Nutrients 12: 3639 (2020) 

  44. Sampath C, Rashid MR, Sang S, Ahmedna M. Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed. Pharmacother. 87: 73-81 (2017) 

  45. Sang S, Shao X, Bai N, Lo CY, Yang CS, Ho CT. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species. Chem. Res. Toxicol. 20: 1862-1870 (2007) 

  46. Santamarina AB, Oliveira JL, Silva FP, Carnier J, Mennitti LV, Santana AA, Oyama LM. Green tea extract rich in epigallocatechin3-gallate prevents fatty liver by AMPK activation via LKB1 in mice fed a high-fat diet. PLoS One 10: 0141227 (2015) 

  47. Sato D. Inhibition of urinary bladder tumors induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine in rats by green tea. Int. J. Urol. 6: 93-99 (1999) 

  48. Sharma A, Gupta S, Sarethy IP, Dang S, Gabrani R. Green tea extract: possible mechanism and antibacterial activity on skin pathogens. Food Chem. 135: 672-675 (2012) 

  49. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia 44: 129-146 (2001) 

  50. Tang W, Li S, Liu Y, Huang MT, Ho CT. Anti-diabetic activity of chemically profiled green tea and black tea extracts in a type 2 diabetes mice model via different mechanisms. J. Funct. Food. 5: 1784-1793 (2013) 

  51. Xia HM, Wang J, Xie XJ, Xu LJ, Tang SQ. Green tea polyphenols attenuate hepatic steatosis, and reduce insulin resistance and inflammation in high-fat diet-induced rats. Int. J. Mol. Med. 44: 1523-1530 (2019) 

  52. Xu JZ, Yeung SYV, Chang Q, Huang Y, Chen ZY. Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. Br. J. Nutr. 91: 873-881 (2004) 

  53. Zielinski AAF, Haminiuk CWI, Alberti A, Nogueira A, Demiate IM, Granato D. A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Res. Int. 60: 246-254 (2014) 

  54. Zhu J, Cai R, Tan Y, Wu X, Wen Q, Liu Z, Ouyang S, Yin Z, Yang H. Preventive consumption of green tea modifies the gut microbiota and provides persistent protection from high-fat diet-induced obesity. J. Funct. Food. 64: 103621 (2020) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로