$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals 원문보기

Journal of Internet Computing and Services = 인터넷정보학회논문지, v.22 no.3, 2021년, pp.9 - 16  

Jeong, Seungmin (Department of Software Convergence, Soonchunhyang University) ,  Oh, Dongik (Department of Medical IT Engineering, Soonchunhyang University)

Abstract AI-Helper 아이콘AI-Helper

This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal ...

주제어

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • We tested three DL methods (DNN, RNN, and CNN) combined with AAE against four datasets made for the human activity classification; one lab dataset and three publically available datasets. Our experiment result shows that the hybrid-DL model outperforms models using only the DL classifier (average accuracy: 98.

대상 데이터

  • The elevator-up and elevator-down are treated as the same activity; with the acceleration sensor only, it is impossible to detect ascent and descent in an elevator moving at a constant speed. A total of 9057 windows data are collected.
  • The UCI-mobile dataset provides data from six activities; walking, sitting, standing, lying, walking upstairs/downstairs. Data are collected for a total of 10299 windows. A smartphone mounted on the wrist is used for data collection.
  • In this experiment, we measured the performance of a total of 6 DL models, including DNN, CNN, RNN, and their AAE hybrid models, against four datasets. For each dataset, train, validation, and test data are divided into the ratio of 6:2:2.
  • The UCI-mobile dataset provides data from six activities; walking, sitting, standing, lying, walking upstairs/downstairs. Data are collected for a total of 10299 windows.
  • We use only the data obtained from the wrist-mounted sensor. The dataset consists of a total of 6346 windows.
  • The pamap2 dataset is collected while subjects wear an IMU (Inertial Measurement Unit) on their wrists, chest, and knees. It contains 12 activity data.
  • This study evaluates the DL models' classification performance mentioned in Section 3.3, namely the DNN, CNN, RNN, and their AAE hybrid versions.
  • The data are transmitted to the artificial intelligence server. Through this experiment, a total of 7185 windows of data are collected for the 13 activities, which consist of stationary, walking, running, stair-up/down, sitting/standing on floor/chair, lying/getting up on floor/bed.
  • To obtain the lab dataset, six subjects wearing a smartwatch-type sensor with a built-in 3-axis acceleration sensor on their left wrist naturally performed 13 types of activities. The sensor collected 3-axis acceleration data 40 times per second.
본문요약 정보가 도움이 되었나요?

참고문헌 (19)

  1. Guan Yuan, Zhaohui Wang, Fanrong Meng, Qiuyan Yan, Shixiong Xia, "An overview of human activity recognition based on smartphone," Sensor Review, 2018. https://doi.org/10.1108/SR-11-2017-0245 

  2. Yassine, Abdulsalam, Shailendra Singh, and Atif Alamri. "Mining human activity patterns from smart home big data for health care applications," IEEE Access 5, 13131-13141, 2017. https://doi.org/10.1109/ACCESS.2017.2719921 

  3. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., and Darrell, T., "Long-term recurrent convolutional networks for visual recognition and description," In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2625-2634, 2015. https://doi.org/10.1109/cvpr.2015.7298878 

  4. Yan Wang, Shuang Cang, Hongnian Yu, "A survey on wearable sensor modality centred human activity recognition in health care," Journal of Expert Systems With Applications, Vol. 137, pp. 167-190, 2019. https://doi.org/10.1016/j.eswa.2019.04.057 

  5. O. D. Lara and M. A. Labrador, "A Survey on Human Activity Recognition using Wearable Sensors," IEEE Communications Surveys & Tutorials, Vol. 15, no. 3, pp. 1192-1209, Third Quarter 2013. https://doi.org/10.1109/SURV.2012.110112.00192 

  6. S. Jeong, C. Choi, D. Oh, "Development of a MachineLearning based Human Activity Recognition System including Eastern-Asian Specific Activities," Journal of Internet Computing and Services, Vol. 21, No. 4, pp. 127-135, Aug. 2020. https://doi.org/10.1109/ACCESS.2017.2719921 

  7. Florenc Demrozi, Graziano Pravadelli, Azra Bihorac, Parisa Rashidi, "Human Activity Recognition using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey," Preprint http://arxiv.org (arXiv:2004.08821v1) Apr. 2020. 

  8. Jindong Wang, Yiqiang Chen, Huji Hao, Xiaohui Peng, Lisha Hu, "Deep learning for sensor-based activity recognition: A survey," Pattern Recognition Letters, Volume 119, Pages 3-11, ISSN 0167-8655, 2019. https://doi.org/10.1016/j.patrec.2018.02.010 

  9. Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks," Science 28, 504-507, 2006. https://doi.org/10.1126/science.1127647 

  10. Wang, Yasi, Hongxun Yao, and Sicheng Zhao. "Auto-encoder based dimensionality reduction," Neurocomputing 184, pp. 232-242, 2016. https://doi.org/10.1016/j.neucom.2015.08.104 

  11. Makhzani, Alireza, et al. Adversarial Autoencoders, 2016. https://arxiv.org/abs/1511.05644 

  12. Abbaspour, Saedeh, et al. "A comparative analysis of hybrid deep learning models for human activity recognition," Sensors 20.19, 5707, 2020. https://doi.org/10.3390/s20195707 

  13. Ronao, Charissa Ann, and Sung-Bae Cho. "Human activity recognition with smartphone sensors using deep learning neural networks," Expert systems with applications 59, pp. 235-244, 2016. https://doi.org/10.1016/j.eswa.2016.04.032 

  14. Murad, Abdulmajid, and Jae-Young Pyun. "Deep recurrent neural networks for human activity recognition," Sensors 17.11, 2556, 2017. https://doi.org/10.3390/s17112556 

  15. O'Shea, Keiron, and Ryan Nash. "An introduction to convolutional neural networks," preprint arXiv: 1511.08458, 2015. https://arxiv.org/abs/1511.08458 

  16. Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi. "Understanding of a convolutional neural network," International Conference on Engineering and Technology (ICET). IEEE, 2017. https://doi.org/10.1109/ICEngTechnol.2017.8308186 

  17. Reiss, Attila, and Didier Stricker. "Introducing a new benchmarked dataset for activity monitoring," 2012 16th International Symposium on Wearable Computers. IEEE, 2012. https://doi.org/10.1109/ISWC.2012.13 

  18. Anguita, Davide, et al. "A public domain dataset for human activity recognition using smartphones," Esann Vol. 3. 2013. https://doi.org/10.1109/ICEngTechnol.2017.8308186 

  19. Zhang, Mi, and Alexander A. Sawchuk. "USC-HAD: a daily activity dataset for ubiquitous activity recognition using wearable sensors," Proceedings of the 2012 ACM Conference on Ubiquitous Computing. 2012. https://doi.org/10.1145/2370216.2370438 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로