$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

탄소섬유를 활용한 구조용 배터리 연구 동향
A Review of Structural Batteries with Carbon Fibers 원문보기

공업화학 = Applied chemistry for engineering, v.32 no.4, 2021년, pp.361 - 370  

권동준 (경상국립대학교 나노신소재융합공학부 그린에너지융합연구소) ,  남상용 (경상국립대학교 나노신소재융합공학부 그린에너지융합연구소)

초록
AI-Helper 아이콘AI-Helper

탄소 섬유 강화플라스틱은 가볍지만 우수한 기계적 강도를 가지는 복합재의 한 종류이다. 가벼우면서 우수한 기계적 강도를 가지는 탄소 섬유 강화플라스틱은 산업 전반에 널리 이용되고 있으며, 최근 활발히 연구되고 있는 전기자동차무인기 등의 무게 감소 핵심 대체 부품으로 연구되고 있다. 배터리를 전원으로 사용하는 운송수단 등은 외부 충격에 이차 폭발의 위험이 있기 때문에 배터리를 안전하게 보호할 수 있는 덮개가 필수적인 동시에, 무게를 줄여 주행거리를 늘려야 하는 요구조건을 만족해야 한다. 이러한 요구 조건에 부합하는 재료로 탄소섬유 강화플라스틱이 손꼽히고 있고, 배터리 보호 덮개 및 다양한 대체품으로의 활용이 연구되고 있다. 한편, 우수한 전기적 특성을 가진 탄소 섬유를 배터리 구성품으로 활용하는 연구가 배터리 분야에서 진행 중이고, 이에 더 나아가 탄소 섬유가 배터리를 보호하고 배터리 전극 및 집전체 역할까지 동시에 수행하는 구조용 배터리에 대한 연구가 스웨덴과 미국을 중심으로 활발히 연구 중이다. 본 총설에서는 탄소 섬유의 역할에 따른 구조용 배터리의 분류 및 해당 배터리들에서 발생하는 문제점 등을 포괄하는 최근 연구 동향을 요약하고, 구조용 배터리에 대한 전망을 간략히 논의하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Carbon fiber reinforced polymer (CFRP) is one of the composite materials, which has a unique property that is lightweight but strong. The CFRPs are widely used in various industries where their unique characteristics are required. In particular, electric and unmanned aerial vehicles critically need ...

주제어

표/그림 (16)

참고문헌 (66)

  1. B. A. Newcomb, Processing, structure, and properties of carbon fibers, Compos. Part A Appl. Sci. Manuf., 91, 262-282 (2016). 

  2. A. A. Jaber, A. A. Obaid, S. G. Advani, and J. W. Gillespie, Prediction of equilibrium spacing between charged polymer particles in contact with a carbon fiber, J. Electrostat., 111, 103577 (2021). 

  3. D. J. Kwon, N. S. R. Kim, Y. J. Jang, H. H. Choi, K. Kim, G. Kim, J. Kong, S. Y. Nam, Impacts of thermoplastics content on mechanical properties of continuous fiber-reinforced thermoplastic composites, Compos. B Eng., 216, 108859 (2021). 

  4. D. J. Kwon, J. H. Kim, K. L. DeVries, and J. M. Park, Optimized epoxy foam interface of CFRP/epoxy foam/CFRP sandwich composites for improving compressive and impact properties, J. Mater. Res. Technol., 11, 62-71 (2021). 

  5. J. H. Kim, P. S. Shin, D. J. Kwon, and J. M. Park, 2D electrical resistance (ER) mapping to detect damage for carbon fiber reinforced polyamide composites under tensile and flexure loading, Compos. Sci. Technol., 201, 108480 (2021). 

  6. D. J. Kwon, N. S. R. Kim, Y. J. Jang, S. B. Yang, J. H. Yeum, J. H. Jung, S. Y. Nam, Y. B. Park, and W. Ji, Investigation of impact resistance performance of carbon fiber reinforced polypropylene composites with different lamination to applicate fender parts, Compos. B Eng., 215, 108767 (2021). 

  7. J. Yuan, L. D. Gomba, A. D. Callegaro, J. Reimers, and A. Emadi, A review of bidirectional on-board chargers for electric vehicles, IEEE Access, 9, 51501-51518 (2021). 

  8. Y. Balai and S. Stegen, Review of energy storage systems for vehicles based on technology, environmental impacts, and costs, Renew. Sustain. Energy Rev., 135, 110185 (2021). 

  9. H. A. Gabbar, A. M. Othman, and M. R. Abdussami, Review of battery management systems (BMS) development and industrial standards, Technol., 9(2), 1-23 (2021). 

  10. A. Taniguchi, N. Fujioka, M. Ikoma, and A. Ohta, Development of nickel/metal-hydride batteries for EVs and HEVs, J. Power Sources, 100, 117-124 (2001). 

  11. X. Zeng, M. Li, D. A. E. Hady, W. Alshitari, A. S. A. Bogami, J. Lu, and K. Amine, Commercialization of lithium battery technologies for electric vehicles, Adv. Energy Mater., 9, 1900161 (2019). 

  12. S. Kawkita, M. Teranishi, Y. Ishizaka, and K. Fushinobu, Comparison between the theoretical, experimental and numerical thermal conductivity of composite thermal interface materials using copper metal foam, 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), July 21-23, Orlando, Florida, USA (2020). 

  13. G. Schuh, G. Bergweiler, F. Fiedler, and M. Koltermann, Flexible production concept of a low-cost battery pack housing for electric vehicles, Procedia CIRP, 93, 137-142 (2020). 

  14. Z. Wang, H. Zhang, and X. Xia, Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure, Int. J. Heat Mass Transf., 109, 958-970 (2017). 

  15. D. Carlstedt and L. E. Asp, Performance analysis framework for structural battery composites in electric vehicles, Compos. B Eng., 186, 107822 (2020) 

  16. D. Carlstedt, W. Johannisson, D. Zenkert, P. Linde, and L. Asp. Conceptual design framework for laminated structural battery composites, In: Proc. 18th Eur. Conf. Compos. Mater., Athens, Greece (2018). 

  17. https://www.chalmers.se/en/staff/pages/leifas.aspx. 

  18. Tesla model S owner's manual. Version 2018.48.12. Available online: https://www.tesla.com/sites/default/files/model_s_owners_manual_north_america_en_us.pdf (2019). 

  19. BMW. http://www.bmw.com (2019). 

  20. N. Ihrner, W. Johannisson, F. Sieland, D. Zenkert, and M. Johansson, Structural lithium ion battery electrolytes: Via reaction induced phase-separation, J. Mater. Chem. A, 5, 25652-25659 (2017). 

  21. Z. Wang, M. Kaferbock, H. Zhao, and H. Chen, First Body-in-white made from composites for a chinese electric car, ATZ Worldwide, 123, 16-21 (2021). 

  22. J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu, X, Wei, X. Wei, and Y. Huang, Building safe lithium-ion batteries for electric vehicles: A review, Electrochem. Energy Rev., 3, 1-42 (2020). 

  23. Y. Miao, P. Hynan, A.V. Jouanne, and A. Yokochi, Current li-ion battery technologies in electric vehicles and opportunities for advancements, Energies, 12, 1074 (2019). 

  24. Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, Xing, Li, N. Tavajohi, and B. Li, A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards, J. Energy Chem., 59, 83-99 (2021). 

  25. L. Asp, M. Johansson, G. Lindbergh, J. Xu, and D. Zenkert, Structural battery composites: A review, Funct. Compos Struct., 1, 042001 (2019). 

  26. Y. Yang, W. Yuan, X. Zhang, Y. Ke, Z. Qiu, J. Luo, Y. Tang, C. Wang, Y. Yuan, and Y. Huang, A review on structuralized current collectors for high-performance lithiumion battery anodes, Appl. Energy, 276, 115464 (2020). 

  27. Y. Wang, X. Wang, M. Xue, Q. Li, Y. Zhang, D. Liu, J. Liu, and W. Rao, All-in-One ENERGISER design: Smart liquid metal-air battery, Chem. Eng. J., 409, 128160 (2021). 

  28. D. A. Shockey, S. C. Ventura, S. C. Narang, J. W. Simons, B. C. Bourne, and B. D. Peterson, Power composites: Structural materials that generate and store electrical energy, Final Report, DTIC (2005). 

  29. J. Galos, A. S. Best, and A. P. Mouritz, Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads, Mater. Des., 185, 108228 (2020). 

  30. J. Chen, Y. Zhou, M. S. Islam, X. Cheng, S. A. Brown, Z. Han, Z. N. Rider, and C. H. Wang, Carbon fiber reinforced Zn-MnO 2 structural composite batteries, Compos. Sci. Technol., 209, 108787 (2021). 

  31. J. Xu and J. Varna, Matrix and interface cracking in cross-ply composite structural battery under combined electrochemical and mechanical loading, Compos. Sci. Technol., 186, 107891 (2020). 

  32. E. D. Wetzl, Reducing weight: Multifunctional composites integrate power, communications, and structure, The AMPTIAC Quarterly, 8, 91-95 (2004). 

  33. K. Pattarakunnan, J. Galos, R. Das, and A. P. Mouritz, Impact damage tolerance of energy storage composite structures containing lithium-ion polymer batteries, Compos. Struct., 267, 113845 (2021). 

  34. J. Galos, A. A. Khatibi, and A. P. Mouritz, Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries, Compos. Struct., 220, 677-686 (2019). 

  35. K. Moyer, C. Meng, B. Marshall, O. Assal, J. Eaves, D. Perez, R. Karkkainen, L. Roberson, and C. L. Pint, Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats, Energy Storage Mater., 24, 676-681 (2020). 

  36. S. Arepalli and P. Moloney, Engineered nanomaterials in aerospace, MRS Bull., 40, 804-811 (2015). 

  37. J. A. Samareh and E. J. Siochi, Systems analysis of carbon nanotubes: Opportunities and challenges for space applications, Nanotechnol., 28, 372001 (2017). 

  38. P. Ladpli, R. Nardari, F. Kopsftopoulos, and F. K. Chang, Multifunctional energy storage composite structures with embedded lithium-ion batteries, J. Power Sources, 414, 517-529 (2019). 

  39. R. Johnson and I. May, Partial-interaction design of composite beams, Struct. Eng., 53(8), 305-311 (1975). 

  40. I. M. Viest, Investigation of stud shear connectors for composite concrete and steel T beams, J. Proc., 52, 875-892 (1956). 

  41. Y. Wang, Deflection of steel-concrete composite beams with partial shear interaction, J. Struct. Eng., 124(10), 1159-1165 (1998). 

  42. E. Jacques, M. He. Kjell, D. Zenkert, G. Lindberghb, and M. Behm, Expansion of carbon fibres induced by lithium intercalation for structural electrode applications, Carbon, 59, 246-254 (2013). 

  43. L. E. Asp and E. S. Greenhalgh, Structural power composites, Compos. Sci. Technol., 101, 41-61 (2014). 

  44. J. F. Snyder, R. H. Carter, and E. D. Wetzel, Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries, Chem. Mater., 19, 3793-3801 (2007). 

  45. T. Carlson, D. Ordeus, M. Wysocki, and L. E. Asp, Structural capacitor materials made from carbon fibre epoxy composites, Compos. Sci. Technol., 70(7), 1135-1140 (2010). 

  46. N. Muralidharan, E. Teblum, A. S. Westover, D. Schauben, A. Itzhak, M. Muallem, G. D. Nessim, and C. L. Pint, Carbon nanotube reinforced structural composite supercapacitor, Scientific. Reports, 8, 17662 (2018). 

  47. W. Johannisson, N. Ihrner, D. Zenkert, M. Johansson, D. Carlstedt, L. E. Asp, and F. Sieland, Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries, Compos. Sci. Technol., 168, 81-87 (2018). 

  48. C. Meng, N. Muralidharan, E. Teblum, K. E. Moyer, G. D. Nessim, and C. L. Pint, Mechanically-robust structural lithium-sulfur battery with high energy density, Nano Lett., 18, 7761-7768 (2018). 

  49. E. L. Wong, D. M. Baechle, K. Xu, J. F. Snyder, R. H. Carter, and E. D. Wetzel, Design and processing of structural composite batteries, SAMPE 2007. June 3-7, Baltimore, Maryland, U.S.A. (2007). 

  50. W. Huang, P. Wang, X. Liao, Y. Chen, J. Borovila, T. Jin, A. Li, Q. Cheng, Y. Zhang, H. Zhai, A. Chitu, Zhai, A. Chitu, Z. Shan, and Y. Yang, Mechanically-robust structural lithium-sulfur battery with high energy density, Energy Storage Mater., 33, 416-422 (2020). 

  51. Z. S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, and H. M. Cheng, Field emission of single-layer graphene films prepared by electrophoretic deposition, Adv. Mater., 21, 1756-1760 (2009). 

  52. M. Diba, A. G. Gallastegui, R. N. Klupp Taylor, F. Pishbin, M. P. Ryan, M. S. P. Shaffer, and A. R. Boccaccini, Quantitative evaluation of electrophoretic deposition kinetics of graphene oxide, Carbon, 67, 656-661 (2014). 

  53. Z. Y. Xia, D. Wei, E. Anitowska, V. Bellani, L. Ortolani, V. Morandi, M. Gazzano, A. Zanelli, S. Borini, and V. Palermo, Electrochemically exfoliated graphene oxide/iron oxide composite foams for lithium storage, produced by simultaneous graphene reduction and Fe(OH)3 condensation, Carbon, 84, 254-262 (2015). 

  54. Z. Y. Xia, M. Christian, C. Arbizzani, V. Morandi, M. Gazzano, V. Quintano, A. Kovtun, V. Palermo, and A robust, modular approach to produce graphene-MO X multilayer foams as electrodes for li-ion batteries, Nanoscale, 11, 5265-5273 (2019). 

  55. J. S. Sanchez, J. Zu, Z. Xia, J. Sun, L. E. Asp, and V. Palermo, Electrophoretic coating of LiFePO 4 /graphene oxide on carbon fibers as cathode electrodes for structural lithium ion batteries, Compos. Sci. Technol., 208, 108768 (2021). 

  56. Y. Yu, B. Zhang, M. Feng, G. Qi, F. Tian, Q. Feng, J. Yang, and S. Wang, Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites, Compos. Sci. Technol., 147, 62-70 (2017). 

  57. J. Xu, W. Johannisson, M. Johansen, F. Liu, D. Zenkert, G. Lindbergh, and L. E. Asp, Characterization of the adhesive properties between structural battery electrolytes and carbon fibers, Compos. Sci. Technol., 188, 107962 (2020). 

  58. Toray Carbon Fibres America Inc., T800H Data Sheet (2019). 

  59. Toray Carbon Fibres America Inc., T800S Data Sheet (2019). 

  60. N. Ihrner, W. Johannisson, F. Sieland, D. Zenkert, and M. Johansson, Structural lithium ion battery electrolytes: Via reaction induced phase-separation, J. Mater. Chem. A, 5, 25652-25659 (2017). 

  61. W. Johannisson, N. Ihrner, D. Zenkert, M. Johansson, D. Carlstedt, L. E. Asp, and F. Sieland, Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries, Compos. Sci. Technol., 168, 81-87 (2018). 

  62. L. M. Schneider, N. Ihrner, D. Zenkert, and M. Johansson, Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries, ACS Appl. Energy Mater., 2, 4362-4369 (2019). 

  63. L. E. Asp, K. Bouton, D. Carlstedt, S. Duan, R. Harnden, W. Johannisson, M. Johansen, M. K. G. Johansson, G. Lindbergh, F. Liu, K. Peuvot, L. M. Schneider, J. Xu, and D. Zenkert, A structural battery and its multifunctional performance, Adv. Energy Sustain. Res., 2, 2000093 (2021). 

  64. H. W. Park, M. S. Jang, J. S. Choi, J. Pyo, and C. G. Kim, Characteristics of woven carbon fabric current collector electrodes for structural battery, Compos. Struct., 256, 112999 (2021). 

  65. H. Cha, J. Kim, Y. Lee, J. Cho, and M. Park, Issues and challenges facing flexible lithiumion batteries for practical application, Small, 14(43), 1-18 (2018). 

  66. H. J. Peng, J. Q. Huang, X. B. Cheng, and Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries, Adv. Energy Mater., 7(24), 1700260 (2017). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로