$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Building Energy Time Series Data Mining for Behavior Analytics and Forecasting Energy consumption 원문보기

KSII Transactions on internet and information systems : TIIS, v.15 no.6, 2021년, pp.1957 - 1980  

Balachander, K (Department of Computer Science and Engineering, Velammal Institute of Technology Panchetti) ,  Paulraj, D (Department of Computer Science and Engineering, R.M.K College of Engineering and Technology Puduvoyal)

Abstract AI-Helper 아이콘AI-Helper

The significant aim of this research has always been to evaluate the mechanism for efficient and inherently aware usage of vitality in-home devices, thus improving the information of smart metering systems with regard to the usage of selected homes and the time of use. Advances in information proces...

주제어

표/그림 (19)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • This research describes the influence of consumers' behavior and their particular preferences on reasons to use energy that can be taken from appliances time associated with time series for energy
본문요약 정보가 도움이 되었나요?

참고문헌 (41)

  1. A.A. Alola, F.V. Bekun, andS.A. Sarkodie, "Dynamic impact of trade policy, economic growth, fertility rate, renewable and non-renewable energy consumption on ecological footprint in Europe," Science of the Total Environment, 685, pp. 702-709, 2019. 

  2. K. Zhou, and S. Yang, "Understanding household energy consumption behavior: The contribution of energy big data analytics," Renewable and Sustainable Energy Reviews, 56, pp.810-819, 2016. 

  3. Q. Ding, W. Cai, C. Wang, and M. Sanwal, "The relationships between household consumption activities and energy consumption in china-an input-output analysis from the lifestyle perspective," Applied Energy, 207, pp.520-532, 2017. 

  4. F. Ziel, and R. Steinert, "Probabilistic mid-and long-term electricity price forecasting," Renewable and Sustainable Energy Reviews, 94, pp.251-266, 2018. 

  5. S. Singh, and A. Yassine, "Big data mining of energy time series for behavioral analytics and energy consumption forecasting," Energies, 11(2), pp.452, 2018. 

  6. S. Bouktif, A. Fiaz, A. Ouni, and M.A.Serhani, "Single and multi-sequence deep learning models for short- and medium-term electric load forecasting," Energies, 12(1), pp.149, 2019. 

  7. P. Wang, P, H. Zhang, Z. Qin, and G. Zhang, "A novel hybrid-Garch model based on ARIMA and SVM for PM2. 5 concentrations forecasting," Atmospheric Pollution Research, 8(5), pp.850-860, 2017. 

  8. C. Chatfield, and H. Xing, The analysis of time series: an introduction with R, CRC press, 2019. 

  9. L. Faes, A. Porta, M. Javorka, and G.Nollo, "Efficient computation of multiscale entropy over short biomedical time series based on linear state-space models," Complexity, 2017. 

  10. S.N. Fallah, R.C. Deo, M. Shojafar, M. Conti, and S.Shamshirband, "Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions," Energies, 11(3), pp.596, 2018. 

  11. J. Gu, Z. Wang, J. Kuen, L. Ma, A.Shahroudy, B. Shuai, andT. Chen, "Recent advances in convolutional neural networks," Pattern Recognition, 77, pp.354-377, 2018. 

  12. Jui-Sheng Chou, and Duc-Son Tran, "Forecasting Energy Consumption Time Series using Machine Learning Techniques based on Usage Patterns of Residential Householders," Energy, 165, pp. 709-726, 2018. 

  13. Y. Liu, C. Gong, L. Yang, and Y. Chen, "DSTP-RNN: A dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction," Expert Systems with Applications, 143, pp.113082, 2020. 

  14. L. Mou, P. Ghamisi, and X. Zhu, "Deep recurrent neural networks for hyperspectral image classification," IEEE Transactions on Geoscience and Remote Sensing, 55(7), pp.3639-3655, 2017. 

  15. Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, "Recurrent neural networks for multivariate time series with missing values," Scientific Reports, 8(1), pp.1-12, 2018. 

  16. T.Y. Kim, and S.B. Cho, "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, 182, pp.72-81, 2019. 

  17. A. Rahman, V. Srikumar, and A.D. Smith, "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, 212, pp.372-385, 2018. 

  18. M. Kraus, and S.Feuerriegel, "Forecasting remaining useful life: Interpretable deep learning approach via variational Bayesian inferences," Decision Support Systems, 125, pp.113100, 2019. 

  19. V.K. Verma, and B. Chandra, "An application of theory of planned behavior to predict young Indian consumers' green hotel visit intention," Journal of Cleaner Production, 172, pp.1152-1162, 2018. 

  20. Y. Wang, W. Liao, and Y. Chang, "Gated recurrent unit network-based short-term photovoltaic forecasting," Energies, 11(8), pp.2163, 2018. 

  21. C. Ma, J.H. Menke, J. Dasenbrock, M. Braun, M. Haslbeck, and K.H. Schmid, "Evaluation of energy losses in low voltage distribution grids with high penetration of distributed generation," Applied Energy, 256, pp.113907, 2019. 

  22. A. Yassine, S. Singh, and A. Alamri, "Mining human activity patterns from smart home big data for health care applications," IEEE Access, 5, pp.13131-13141, 2017. 

  23. P. Huber, P. Schmieder, M. Gerber, and A. Rumsch, "Poster abstract: Is the run-time of domestic appliances predictable?," Computer Science-Research and Development, 33(1-2), pp.241-243, 2018. 

  24. A. Harell, S. Makonin, and I.V. Bajic, "A recurrent neural network for multisensory non-intrusive load monitoring on a Raspberry Pi," in Proc. of IEEE MMSP, 18, August 2018. 

  25. M. Fahim, K. Fraz, and A. Sillitti, "TSI: Time Series to Imaging based Model for Detecting Anomalous Energy Consumption in Smart Buildings," Information Sciences, 523, pp.1-13, 2020. 

  26. L.G.B. Ruiz, M.C. Pegalajar, R. Arcucci, and M. Molina-Solana, "A Time-Series Clustering Methodology for Knowledge Extraction in Energy Consumption Data," Expert Systems with Applications, 160, pp.113731, 2020. 

  27. C.W. Song, H. Jung, and K. Chung, "Development of a medical big-data mining process using topic modeling," Cluster Computing, 22(1), pp.1949-1958, 2019. 

  28. J. Kong, J. Han, J. Ding, H. Xia, and X. Han, "Analysis of students' learning and psychological features by contrast frequent patterns mining on academic performance," Neural Computing and Applications, 32(1), pp.205-211, 2020. 

  29. G. Bode, T. Schreiber, M. Baranski, and D. Muller, "A time series clustering approach for Building Automation and Control Systems," Applied Energy, 238, pp.1337-1345, 2019. 

  30. S. Singh, and A. Yassine, "Mining energy consumption behavior patterns for households in smart grid," IEEE Transactions on Emerging Topics in Computing, 7(3), pp.404-419, 2019. 

  31. T.T. Nguyen, P.Krishnakumari, S.C. Calvert, H.L. Vu, and H. Van Lint, "Feature extraction and clustering analysis of highway congestion," Transportation Research Part C: Emerging Technologies, 100, pp.238-258, 2019. 

  32. Y. Zhou, H. Wu, Q. Luo, and M. Abdel-Baset, "Automatic data clustering using nature-inspired symbiotic organism search algorithm," Knowledge-Based Systems, 163, pp.546-557, 2019. 

  33. E.L. Lydia, P.K. Kumar, K. Shankar, S.K. Lakshmanaprabu, R.M. Vidhyavathi, and A. Maseleno, "Charismatic document clustering through novel K-Means non-negative matrix factorization (KNMF) algorithm using key phrase extraction," International Journal of Parallel Programming, 48(3), pp.496-514, 2020. 

  34. C. Yuan, and H. Yang, "Research on K-value selection method of K-means clustering algorithm," J-Multidisciplinary Scientific Journal, 2(2), pp.226-235, 2019. 

  35. F. Divina, M. Garcia Torres, F.A. Gomez Vela, and J.L.VazquezNoguera, "A comparative study of time series forecasting methods for short term electric energy consumption prediction in smart buildings," Energies, 12(10), pp.1934, 2019. 

  36. H.I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.A. Muller, "Deep learning for time series classification: a review," Data Mining and Knowledge Discovery, 33(4), pp.917-963, 2019. 

  37. A.K. Ozcanli, F. Yaprakdal, and M.Baysal, "Deep learning methods and applications for electrical power systems: A comprehensive review," International Journal of Energy Research, 44(9), pp. 7136-7157, 2020. 

  38. A. Shrestha and A. Mahmood, "Review of Deep Learning Algorithms and Architectures," IEEE Access, 7, pp. 53040-53065, 2019. 

  39. D. Gilboa, B. Chang, M. Chen, G. Yang, S.S. Schoenholz, E.H. Chi, and J. Pennington, "Dynamical isometry and a mean field theory of LSTMs and GRUs," arXiv preprint arXiv:1901.08987, 2019. 

  40. J.Q. Wang, Y. Du, andJ. Wang, "LSTM based long-term energy consumption prediction with periodicity," Energy, 197, pp.117197, 2020. 

  41. S. Wang, J. Lian, Y. Peng, B. Hu, and H. Chen, "Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China," Agricultural Water Management, 221, pp.220-230, 2019. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로