$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 딥러닝을 이용한 핸드크림의 마찰 시계열 데이터 분류
Deep Learning-based Approach for Classification of Tribological Time Series Data for Hand Creams 원문보기

Journal of Korean Society of Industrial and Systems Engineering = 한국산업경영시스템학회지, v.44 no.3, 2021년, pp.98 - 105  

김지원 (한남대학교 산업경영공학과) ,  이유민 (한남대학교 산업경영공학과) ,  한상헌 ((주)테라리더) ,  김경택 (한남대학교 산업경영공학과)

Abstract AI-Helper 아이콘AI-Helper

The sensory stimulation of a cosmetic product has been deemed to be an ancillary aspect until a decade ago. That point of view has drastically changed on different levels in just a decade. Nowadays cosmetic formulators should unavoidably meet the needs of consumers who want sensory satisfaction, alt...

Keyword

참고문헌 (27)

  1. Adejokun, D.A. and Dodou, K., Quantitative Sensory Interpretation of Rheological Parameters of a Cream Formulation, Cosmetics, 2020,Vol. 7, No. 1, https://doi.org/10.3390/cosmetics7010002. 

  2. Ahuja, A., Lu, J., and Potanin, A., Rheological Predictions of Sensory Attributes of Lotions, Journal of Texture Studies, 2019, Vol. 50, No. 4, pp. 295-305. 

  3. Alisa, E., Jasmina, H., Ognjenka, R., and Edina, V., Measuring the Feeling: Correlations of Sensorial to Instrumental Analyses of Cosmetic Products, 2017, Proceedings of the International Conference on Medical and Biological Engineering, 2017, pp. 425-428. 

  4. Bae, J.-E., Ryoo, J.-Y., and Kang, N.-G., Effects of Linear and Nonlinear Shear Deformation on Measurement for Stickiness of Cosmetics Using Rotational Rheometer, Korea Journal of Cosmetic Science, 2020, Vol. 2, No. 1, pp. 33-46. 

  5. Baki, G., Szoboszlai, M., Liberatore, M.W., and Chandler, M., Application of Check-all-that-apply (CATA) Questions for Sensory Characterization of Cosmetic Emulsions by Untrained Consumers, Journal of Cosmetic Science, 2018, Vol. 69, No. 2, pp. 83-100. 

  6. Calixto, L.S., Infante, V.H.P., and Campos, P.M.B.G.M., Design and Characterization of Topical Formulations: Correlations between Instrumental and Sensorial Measurements, AAPS PharmSciTech, 2018, Vol. 19, pp. 1512-1519. 

  7. Cui, Z., Chen, W., and Chen, Y., Multi-Scale Convolutional Neural Networks for Time Series Classification, ArXiv 1603.06995, 2016. 

  8. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A., Deep Learning for Time Series Classification: a Review, Data Mining and Knowledge Discovery, 2019, Vol. 33, pp. 917-963. 

  9. Geng, Y. and Luo, X. Cost-Sensitive Convolution based Neural Networks for Imbalanced Time-Series Classification. ArXiv 1801.04396, 2018. 

  10. Guest, S., McGlone, F., Hopkinson, A, Schendel, Z. A., Blot, K., and Essick, G., Perceptual and SensoryFunctional Consequences of Skin Care Products, Journal of Cosmetics, Dermatological Sciences and Applications, 2013, Vol. 3, No. 1, pp. 66-78. 

  11. He, K., Zhang, X., Ren, S., and Sun, J., Deep Residual Learning for Image Recognition, IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770-778. 

  12. Huynh, A., Garcia A.G., Young, L. K., Szoboszlai, M., Liberatore, M. W., and Baki, G., Measurements meet Perceptions: Rheology-Texture-Sensory Relations when using Green, Bio-derived Emollients in Cosmetic Emulsions, International Journal of Cosmetic Science, 2021, Vol. 43, pp. 11-19. 

  13. Kwon, Y.-H., Kwon, H.-J., Rang, M.-J., and Lee, S.-M., A Study on Correlation between Frictional Coefficients and Subjective Evaluation while Rubbing Cosmetic Product on Skin, Science of Emotion and Sensibility, 2005, Vol. 8, No. 4, pp. 385-391. 

  14. Lee, J.H. and Kim, J.J., A Study on the Influence of Package Design of Female Cosmetics on Purchasing Preference, Journal of the Society of Korea Industrial and Systems Engineering, 2004, Vol. 27, No. 3, pp. 52-58. 

  15. Mittelman, R., Time-Series Modeling with Undecimated Fully Convolutional Neural Networks. ArXiv 1508.00317, 2015. 

  16. Moravkova, T. and Filip, P., Relation between Sensory Analysis and Rheology of Body Lotions, International Journal of Cosmetic Science, 2016, Vol. 38, No. 3, pp. 558-566. 

  17. Nakano, K., Horiuchi, K., Soneda, T., Kashimoto, A., Tsuchiya, R., Yokoyama, M., A Neural Network Approach to Predict Tactile Comfort of Applying Cosmetic Foundation, Tribology International, 2010, Vol. 43, No. 11, pp. 1978-1990. 

  18. Nakano, K., Kobayashi, K., Nakao, K., Tsuchiya, R., Nagai, Y., Tribological Method to Objectify Similarity of Vague Tactile Sensations Experienced during Application of Liquid Cosmetic Foundations, Tribology International, 2013, Vol. 63, pp. 8-13. 

  19. Pense-Lheritier, A.-M., Recent Developments in the Sensorial Assessment of Cosmetic Products: a Review, International Journal of Cosmetic Science, 2015, Vol. 37, No. 5, pp. 465-473. 

  20. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., and Li, F.-F., ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, 2015, Vol. 115, pp. 211-252. 

  21. Ryoo, J.-Y., Bae, J.-E., and Kang, N.-G., Optimization of In Vivo Stickiness Evaluation for Cosmetic Creams Using Texture Analyzer, Journal of the Society of Cosmetic Scientists of Korea, 2020, Vol. 46, No. 4, pp. 371-382. 

  22. Savary, G., Gilbert, L., Grisel, M., and Picard C., Instrumental and Sensory Methodologies to Characterize the Residual Film of Topical Products Applied to Skin, Skin Research and Technology, 2019, Vol. 25, No. 4, pp. 415-423. 

  23. Shin, Y.S. and Baek, D.H., A Methodology for Customer Core Requirement Analysis by Using Text Mining : Focused on Chinese Online Cosmetics Market, Journal of Society of Korea Industrial and Systems Engineering, 2021, Vol. 44, No. 2, pp. 66-77. 

  24. Vergilio, M. M., de Freitas, A. C. P., da Rocha-Filho, P. A., Comparative Sensory and Instrumental Analyses and Principal Components of Commercial Sunscreens, Journal of Cosmetic Dermatology, 2021, Early View (Online Version of Record before inclusion in an issue) as of 2021/09/17. 

  25. Wang, Z., Yan, W., and Oates, T., Time Series Classification from Scratch with Deep Neural Networks : A Strong Baseline, ArXiv: 1611.06455, 2016. 

  26. Zhao, B., Lu, H., Chen, S., Liu, J., and Wu, D., Convolutional Neural Networks for Time Series Classification, Journal of Systems Engineering and Electronics, 2017, Vol. 28, No. 1, pp. 162-169. 

  27. https://www.loreal-finance.com/en/annual-report-2018/cosmetics-market-2-1/ (2021.7.1 access). 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로