$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

화학물질 독성 빅데이터와 심층학습 모델을 활용한 내분비계 장애물질 선별 방법-세정제품과 세탁제품을 중심으로
A Screening Method to Identify Potential Endocrine Disruptors Using Chemical Toxicity Big Data and a Deep Learning Model with a Focus on Cleaning and Laundry Products 원문보기

韓國環境保健學會誌 = Journal of environmental health sciences, v.47 no.5, 2021년, pp.462 - 471  

이인혜 (용인대학교 자연과학연구소) ,  이수진 (용인대학교 일반대학원 환경보건학과) ,  지경희 (용인대학교 일반대학원 환경보건학과)

Abstract AI-Helper 아이콘AI-Helper

Background: The number of synthesized chemicals has rapidly increased over the past decade. For many chemicals, there is a lack of information on toxicity. With the current movement toward reducing animal testing, the use of toxicity big data and deep learning could be a promising tool to screen pot...

주제어

표/그림 (7)

참고문헌 (38)

  1. Lee D, Lim H, Kim JH, Kim T, Hwang M, Seok K, et al. An investigation of consumer product co-use patterns - focusing on air-fresheners and deodorizer. J Environ Health Sci. 2018; 44(3): 275-282. 

  2. Gabb HA, Blake C. An informatics approach to evaluating combined chemical exposures from consumer products: a case study of asthma-associated chemicals and potential endocrine disruptors. Environ Health Perspect. 2016; 124(8): 1155-1165. 

  3. Sanderson H, Greggs W, Cowan-Ellsberry C, DeLeo P, Sedlak R. Collection and dissemination of exposure data throughout the chemical value chain: a case study from a global consumer product industry. Hum Ecol Risk Assess Int J. 2013; 19(4): 999-1013. 

  4. Park JW. The role of environmental law in assessing and managing risk of chemical products and biocides. Environ Law Policy. 2018; 20: 55-85. 

  5. Heo DA, Huh EH, Park JY, Moon KW, Lee K. An investigation of ingredients and hazardous substances in some consumer products - focusing on cleaners and disinfectants. J Environ Health Sci. 2015; 41(5): 314-326. 

  6. Heo JJ, Kim UJ, Oh JE. Simultaneous quantitative analysis of four isothiazolinones and 3-iodo-2-propynyl butyl carbamate in hygienic consumer products. Environ Eng Res. 2019; 24(1): 137-143. 

  7. Pyun DH, Kim YW, Hwang YW, Lee SY, Park SH. A hazard assessment of chemicals in liquid synthetic detergent using Green-Screen. Korean J Hazard Mater. 2021; 9(1): 30-40. 

  8. Park JY, Lim M, Lee K, Ji K, Yang W, Shin HS, et al. Consumer exposure and risk assessment to selected chemicals of mold stain remover use in Korea. J Expo Sci Environ Epidemiol. 2020; 30(5): 888-897. 

  9. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: the endocrine society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015; 36(6): E1-E150. 

  10. Dodson RE, Nishioka M, Standley LJ, Perovich LJ, Brody JG, Rudel RA. Endocrine disruptors and asthma-associated chemicals in consumer products. Environ Health Perspect. 2012; 120(7): 935-943. 

  11. Rotroff DM, Dix DJ, Houck KA, Knudsen TB, Martin MT, McLaurin KW, et al. Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals. Environ Health Perspect. 2013; 121(1): 7-14. 

  12. United States Environmental Protection Agency. ToxCast Dashboard. Available: https://comptox.epa.gov/dashboard/chemical_lists/toxcast [accessed 20 August 2021]. 

  13. National Institute of Environmental Health Sciences. National Toxicology Program. Tox21: Toxicology in the 21st Century. Available: https://ntp.niehs.nih.gov/whatwestudy/tox21/index.html [accessed 20 August 2021]. 

  14. Judson RS, Magpantay FM, Chickarmane V, Haskell C, Tania N, Taylor J, et al. Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor. Toxicol Sci. 2015; 148(1): 137-154. 

  15. Andersson N, Arena M, Auteri D, Barmaz S, Grignard E, Kienzler A, et al. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. 2018; 16(6): e05311. 

  16. To KT, Fry RC, Reif DM. Characterizing the effects of missing data and evaluating imputation methods for chemical prioritization applications using ToxPi. BioData Min. 2018; 11: 10. 

  17. Jerez JM, Molina I, Garcia-Laencina PJ, Alba E, Ribelles N, Martin M, et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med. 2010; 50(2): 105-115. 

  18. Tang W, Chen J, Wang Z, Xie H, Hong H. Deep learning for predicting toxicity of chemicals: a mini review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2018; 36(4): 252-271. 

  19. Jeong J, Garcia-Reyero N, Burgoon L, Perkins E, Park T, Kim C, et al. Development of adverse outcome pathway for PPAR γ antagonism leading to pulmonary fibrosis and chemical selection for its validation: ToxCast database and a deep learning artificial neural network model-based approach. Chem Res Toxicol. 2019; 32(6): 1212-1222. 

  20. Jeong J, Choi J. Development of AOP relevant to microplastics based on toxicity mechanisms of chemical additives using ToxCast TM and deep learning models combined approach. Environ Int. 2020; 137: 105557. 

  21. Ministry of Environment. Living Environment Safety Information System. Available: https://ecolife.me.go.kr/ecolife [accessed 20 August 2021]. 

  22. National Institute of Environmental Research. National Chemicals Information System. Available: https://ncis.nier.go.kr [accessed 20 August 2021]. 

  23. European Chemicals Agency. Information on Chemicals. Available: https://echa.europa.eu/information-on-chemicals [accessed 20 August 2021]. 

  24. United States Environmental Protection Agency. CompTox Chemicals Dashboard. Available: https://comptox.epa.gov/dashboard [accessed 20 August 2021]. 

  25. National Library of Medicine. PubChem. Available: https://pubchem.ncbi.nlm.nih.gov/ [accessed 20 August 2021]. 

  26. Liu J, Mansouri K, Judson RS, Martin MT, Hong H, Chen M, et al. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Chem Res Toxicol. 2015; 28(4): 738-751. 

  27. Jeong J, Bae SY, Choi J. Identification of toxicity pathway of diesel particulate matter using AOP of PPARγ inactivation leading to pulmonary fibrosis. Environ Int. 2021; 147: 106339. 

  28. Idakwo G, Thangapandian S, Luttrell J, Li Y, Wang N, Zhou Z, et al. Structure-activity relationship-based chemical classification of highly imbalanced Tox21 datasets. J Cheminform. 2020; 12(1): 66. 

  29. RDKit. RDKit: Open-Source Cheminformatics Software. Available: http://www.rdkit.org [accessed 20 August 2021]. 

  30. Perez-Enciso M, Zingaretti LM. A guide for using deep learning for complex trait genomic prediction. Genes (Basel). 2019; 10(7): 553. 

  31. Akoglu H. User's guide to correlation coefficients. Turk J Emerg Med. 2018; 18(3): 91-93. 

  32. Mukherjee A, Su A, Rajan K. Deep learning model for identifying critical structural motifs in potential endocrine disruptors. J Chem Inf Model. 2021; 61(5): 2187-2197. 

  33. Burgoon LD. Autoencoder Predicting Estrogenic Chemical Substances (APECS): an improved approach for screening potentially estrogenic chemicals using in vitro assays and deep learning. Comput Toxicol. 2017; 2: 45-49. 

  34. Zhang Z, Jia C, Hu Y, Sun L, Jiao J, Zhao L, et al. The estrogenic potential of salicylate esters and their possible risks in foods and cosmetics. Toxicol Lett. 2012; 209(2): 146-153. 

  35. Bickers DR, Calow P, Greim HA, Hanifin JM, Rogers AE, Saurat JH, et al. The safety assessment of fragrance materials. Regul Toxicol Pharmacol. 2003; 37(2): 218-273. 

  36. Audrain H, Kenward C, Lovell CR, Green C, Ormerod AD, Sansom J, et al. Allergy to oxidized limonene and linalool is frequent in the U.K. Br J Dermatol. 2014; 171(2): 292-297. 

  37. Gunia-Krzyzak A, Sloczynska K, Popiol J, Koczurkiewicz P, Marona H, Pekala E. Cinnamic acid derivatives in cosmetics: current use and future prospects. Int J Cosmet Sci. 2018; 40(4): 356-366. 

  38. Howes MJ, Houghton PJ, Barlow DJ, Pocock VJ, Milligan SR. Assessment of estrogenic activity in some common essential oil constituents. J Pharm Pharmacol. 2002; 54(11): 1521-1528. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로