$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

주조 방식 및 압연에 따른 연축전지용 납 합금 기판의 부식 특성
Effects of Casting Method and Rolling on the Corrosion Behaviors of Pb Alloys for a Lead Acid Battery 원문보기

Corrosion science and technology, v.20 no.5, 2021년, pp.315 - 323  

오꽃님 (포스코 기술연구소) ,  이규혁 (조선대학교 대학원 첨단소재공학과) ,  장희진 (조선대학교 신소재공학과)

Abstract AI-Helper 아이콘AI-Helper

In this study, we examined corrosion behaviors of two types of Pb alloys for a lead acid battery comparatively. One containing 6.6 wt% Sn, 36 mg/kg Bi, and 612.4 mg/kg Ca was prepared by twin-roll continuous casting. The other containing 5.2 wt% Sn, 30.5 mg/kg Ag, and 557 mg/kg Ca was made by twin-b...

주제어

표/그림 (8)

참고문헌 (27)

  1. Y. Yu, J. Wang, P. Zhang, and J. Zhao, A detailed thermal study of usual LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiMn 2 O 4 and LiFePO 4 cathode materials for lithium ion batteries, Journal of Energy Storage, 12, 37 (2017). Doi: https://doi.org/10.1016/j.est.2017.03.016 

  2. I. Kim, A case study on the effect of storage systems on a distribution network enhanced by high-capacity photovoltaic systems, Journal of Energy Storage, 12, 121 (2017). Doi: https://doi.org/10.1016/j.est.2017.04.010 

  3. M. Ouyang, X. Feng, X. Han, L. Lu, Z. Li, and X. He, A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery, Applied Energy, 165, 48 (2016). Doi: https://doi.org/10.1016/j.apenergy.2015.12.063 

  4. P. Tong, R. Zhao, R. Zhang, F. Yi, G. Shi, A. Li, and H. Chen, Cast and 3D printed ion exchang membranes for monolithic microbial fuel cell fabrication, Journal of Power Sources, 289, 91 (2015). Doi: https://doi.org/10.1016/j.jpowsour.2015.04.113 

  5. B. Hong, L. Jiang, H. Xue, F. Liu, M. Jia, J. Li, and Y. Liu, Characterization of nano-lead-doped active carbon and its application in lead-acid battery, Journal of Power Sources, 270, 332 (2014). Doi: https://doi.org/10.1016/j.jpowsour.2014.07.145 

  6. Y. Yuan, C. Sun, M. Li, S. S. Choi, and Q. Li, Determination of optimal supercapacitor-lead-acid battery energy storage capacity for smoothing wind power using empirical mode decomposition and neural network, Electric Power Systems Research, 127, 323 (2015). Doi: https://doi.org/10.1016/j.epsr.2015.06.015 

  7. X. Lang, D. Wnag, and J. Zhu, Modified titanium foil's surface by high temperature carbon sintering method as the substrate for bipolar lead-acid battery, Journal of Power Sources, 272, 176 (2014). Doi: https://doi.org/10.1016/j.jpowsour.2014.08.072 

  8. M. Saakes, C. Kleijnen, D. Schmal, and P. T. Have, Advanced bipolar lead-acid battery for hybrid electric vehicles, Journal of Power Sources, 95, 68 (2001). Doi: https://doi.org/10.1016/S0378-7753(00)00609-1 

  9. Y. Sun, H. Jou, and J. Wu, Proc. 8th Int. Conf. on Intelligent Systems Design and Applications (ISDA), p. 362, IEEE, Kaohsiung, Taiwan (2008). 

  10. A. Delaille, M. Perrin, F. Huet, and L. Hernout, Study of the "coup de fouet" of lead-acid cells as a function of their state-of-change and state-of-health, Journal of Power Sources, 158, 1019 (2006). Doi: https://doi.org/10.1016/j.jpowsour.2005.11.015 

  11. S. Zhong, H. K. Liu, S. X. Dou, and M. Skyllas-Kazacos, Evaluation of lead-calcium-tin-aluminium grid alloys for valve-regulated lead/acid batteries, Journal of Power Sources, 59, 123 (1996). Doi: https://doi.org/10.1016/0378-7753(95)02312-7 

  12. D. Berndt, Valve-regulated lead-acid batteries, Journal of Power Sources, 95, 2 (2001). Doi: https://doi.org/10.1016/S0378-7753(00)00634-0 

  13. S. Oh, Ph. D. Thesis, pp. 5 - 12, Chonnam National University, Gwangju (2001). 

  14. S. Zhong, J. Wang, H. K. Liu, S. X. Dou, and M. Skyllas-Kazacos, Influence of alloying with bismuth on electrochemical behaviour of lead-calcium-tin grid alloys, Journal of Power Sources 66, 107 (1997). Doi: https://doi.org/10.1016/S0378-7753(96)02535-9 

  15. S. Zhong, J. Wang, H. K. Liu, S. X. Dou, and M. Skyllas-Kazacos, Influence of bismuth on hydrogen and oxygen evolution on lead-calcium-tin-aluminium grid alloys, Journal of Power Sources 66, 159 (1997). Doi: https://doi.org/10.1016/S0378-7753(96)02478-0 

  16. S. Oh and H. Choe, Effects of Alloying Elements on the Corrosion Layer Formation of Pb-Grid/Active Materials Interface, Journal of the Korean Institute of Surface Engineering, 40, 225 (2007). Doi: https://doi.org/10.5695/JKISE.2007.40.5.225 

  17. E. M. Lehockeya, D. Limogesa, G. Palumboa, J. Sklarchukb, K. Tomantschgerb, and A. Vinczeb, On improving the corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering, Journal of Power Sources, 78, 79 (1999). Doi: https://doi.org/10.1016/S0378-7753(99)00015-4 

  18. R. E. Sanders Jr., Continuous castiong for aluminum sheet: a product perspective, Journal of Metals, 64, 291 (2012). Doi: https://doi.org/10.1007/s11837-012-0247-y 

  19. W. Szczypiorski and D. Hazelett, Proc. ALCASTEK 2008, Mumbai, India (2008). 

  20. J. Byers, Annual TMS Meeting (G.W. Warren), TMS, Las Vegas, NV (1995). 

  21. L. C. Peixoto, W. R. Osorio, and A. Garcia, Microstructure and electrochemical corrosion behavior of a Pb1wt%Sn alloy for lead-acid battery components, Journal of Power Sources, 192, 724 (2009). Doi: https://doi.org/10.1016/j.jpowsour.2009.02.081 

  22. D. Pavlov, M. Bojinov, T. Laitinen, and G. Sundholm, Electrochemical behaviour of the antimony electrode in sulphuric acid solutions-I. Corrosion processes and anodic dissolution of antimony, Electrochimica Acta, 36, 2081 (1991). Doi: https://doi.org/10.1016/0013-4686(91)85213-Q 

  23. D. Pavlov, M. Bojinov, T. Laitinen, and G. Sundholm, Electrochemical behaviour of the antimony electrode in sulphuric acid solutions-II. Formation and properties of the primary anodic layer, Electrochimica Acta, 36, 2087 (1991). Doi: https://doi.org/10.1016/0013-4686(91)85214-R 

  24. M. Pourbaix, Atlas of Electrochemical Equilibria, pp. 485 - 492, Pergamon Press (1966). 

  25. P. Jones and H.R. Thirsk, An electrochemical and structural investigation of the processes occurring at silver anodes in sulphuric acid, Transactions of the Faraday Society, 50, 732 (1954). https://pubs.rsc.org/en/content/articlelanding/1954/tf/tf9545000732 

  26. J. J. McGinnity and M. J. Nicol, The role of silver in enhancing the electrochemical activity of lead and lead-silver alloy anodes, Hydrometallurgy 144-145, 133 (2014). Doi: https://doi.org/10.1016/j.hydromet.2014.02.005 

  27. Y. Yamamoto, K. Fumino, T. Ueda, and M. Nambu, A potentiodynamic study of the lead electrode in sulphuric acid solution, Electrochimica Acta 37, 199 (1992). Doi: https://doi.org/10.1016/0013-4686(92)85003-4 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로