$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기계학습을 활용한 오리사 바닥재 수분 발생량 분석
Estimation of Duck House Litter Evaporation Rate Using Machine Learning 원문보기

한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.63 no.6, 2021년, pp.77 - 88  

김다인 (Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ,  이인복 (Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ,  여욱현 (Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ,  이상연 (Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ,  박세준 (Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ,  크리스티나 (Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ,  김준규 (Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ,  최영배 (Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ,  조정화 (Research Institu) ,  정효혁 ,  강솔뫼

Abstract AI-Helper 아이콘AI-Helper

Duck industry had a rapid growth in recent years. Nevertheless, researches to improve duck house environment are still not sufficient enough. Moisture generation of duck house litter is an important factor because it may cause severe illness and low productivity. However, the measuring process is di...

주제어

표/그림 (17)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구에서는 여러 기계학습 회귀분석을 이용하여 오리사 바닥재 주변 공기의 온도, 습도, 풍속 및 함수비 등 실시간 모니터링이 가능한 변수들을 바탕으로 바닥재 수분 발생량을 예측하는 모델을 제안했다. 오리의 수나 오리와 관련된 변수는 바닥재 함수비에 영향을 미치고, 이를 통해 바닥재 수분 발생량에 영향을 미칠 것으로 판단되어 조금 더 직접적인 인자인 바닥재 함수비를 활용하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (40)

  1. Korean Duck Association, 2019. A report of research on the improvement of duck breeding facilities I. Duck Village 195: 24-35 (in Korean). 

  2. Korean Duck Association, 2019. A report of research on the improvement of duck breeding facilities II. Duck Village 196: 20-40 (in Korean). 

  3. Korean Duck Association, 2019. A report of research on the improvement of duck breeding facilities III Duck Village 197: 30-51 (in Korean). 

  4. Statistics Korea, 2020. Results of the farm and fishery household economy survey in 2020. 

  5. Statistics Korea, 2020. 2020 Livestock production cost survey. 

  6. Bang, H. T., H. C. Choi, H. S. Chae, J. C. Na, H. G. Kang, M. J. Kim, D. W. Kim, S. B. Park, S. H. Jung, and O. S. Seo, 2010. A study on the productivity and environmental change according to duck house litter. Korean Society of Poultry Science 27: 132-134 (in Korean). 

  7. Bang, H. T., D. W. Kim, H. B. Jong, J. C. Na, H. K. Kang, M. J. Kim, M. M. H. Mushtaq, H. C. Choi, S. B. Lee, M. Kang, and J. H. Kim, 2013. Effect of various forms of floor system on performance of meat-type duck and environments of duck house. Korean Journal Society of Poultry Science 40(3): 253-262 (in Korean). doi:10.5536/ KJPS.2013.40.3.253. 

  8. Yeo, U. H., Y. S. Cho, K. S. Kwon, T. H. Ha, S. J. Park, R. W. Kim, S. Y. Lee, S. N. Lee, I. B. Lee, and I. H. Seo, 2015. Analysis of ventilation efficiency for the summer about a design plan of standard duck house using CFD. Korean Journal Society of Poultry Science 57(5): 51-60 (in Korean). doi:10.5389/KSAE.2015.57.5.051. 

  9. Kim, Y. H., 2017. Analysis of ventilation efficiency of standard duck house using computational fluid dynamics. Seoul National University: 1-91 (in Korean). 

  10. Hong, E. C., B. S. Kang, W. K. Kang, J. J. Jeon, H. S. Kim, J. S. Son, and C. H. Kim, 2019. Effect of different stocking densities in plastic wired-floor house on performance and uniformity of Korean native commercial ducks. Korean Journal Society of Poultry Science 46(4): 215-221 (in Korean). doi:10.5336/KJPS.2019.46.4.215. 

  11. Lee, S. Y., I. B. Lee, R. W. Kim, U. H. Yeo, C. Decano, J. G, Kim, Y. B. Choi, Y. M. Park, and H. H. Jeong, 2019. Assessment of evaporation rates from litter of duck house, Journal of the Korean Society of Agricultural Engineers 61(5): 101-108 (in Korean). doi:10.5389/KSAE.2019.61.5.101. 

  12. Lee, S. Y., I. B. Lee, R. W. Kim, U. H. Yeo, J. G. Kim, and K. S. Kwon, 2020. Dynamic energy modeling for analysis of the thermal and hygroscopic environment in a mechanically ventilated duck house, Biosystems Engineering, 200: 431-449. doi:10.1016/j.biosystemseng.2020.10.015 

  13. Kwon, K. S., J. S. Woo, J. H. Noh, S. I. Oh, J. B. Kim, J. K. Kim, K. Y. Yang, D. H. Jang, and S. M. Choi, 2021. Development and field-evaluation of automatic spreader for bedding materials in duck houses. Journal of the Korean Society of Agricultural Engineers 63(1): 37-48 (in Korean). doi:10.5389/KSAE.2021.63.1.037. 

  14. Bernhart, M., and O. O. Fasina, 2009. Moisture effect on the storage, handling and flow properties of poultry litter. Waste Management 29: 1392-1398. doi:10.1016/j.wasman.2008.09.005. 

  15. Brye, K. R., N. A. Slaton, R. J. Norman, and M. C. Savin, 2005. Short-term effects of poultry litter form and rate on soil bulk density and water content. Communications in Soil Science and Plant Analysis 35(15 & 16): 2311-2325. doi:10.1081/LCSS-200030655. 

  16. Choi, I. H., and Nahm K. H., 2004. Effects of applying two different chemical additives to the litter on broiler performance and the carbon dioxide gas production in poultry houses. Korean Society of Poultry Science 31(3): 171-176 (in Korean). 

  17. Wadud, S., A. Michaelsen, E. Gallagher, G. Parcsi, O. Zemb, R. Stuetz, and M. Manefield, 2012. Bacterial and fungal community composition over time in chicken litter with high or low moisture content. British Poultry Science 53(5): 561-569. doi:10.1080/00071668.2012.723802. 

  18. Dunlop, M. W., P. J. Blackall, and R. M. Stuetz, 2015. Water addition, evaporation and water holding capacity of poultry litter. Science of the Total Environment 538: 979-985. doi:10.1016/j.scitotenv.2015.08.092. 

  19. Dunlop, M. W., J. McAuley, P. J. Blackall, and R. M. Stuetz, 2016. Water activity of poultry litter: relationship to moisture content during a grow-out. Journal of Environmental Management 172: 201-206. doi:10.1016/j.jenvman.2016.02.036. 

  20. Kim, S. H., S. Y. Park, S. J. Lee, and K. S. Ryu, 2003. Effect of feeding lactobacillus reuteri to broiler on growing performance, intestinal microflora and environmental factor. Korean Society of Poultry Science 30(1): 17-28 (in Korean). 

  21. Miles, D. M., D. E. Rowe, and T. C. Cathcart, 2011. Litter ammonia generation: moisture content and organic versus inorganic bedding materials. Poultry Science 90: 1162-1169. doi:10.3382/ps.2010-01113. 

  22. Lee, W. S., J. Y. Ryu, T. W. Ban, S. H. Kim, and H. C. Choi, 2017. Prediction of water usage in pig farm based on machine learning. Journal of the Korea Institute of Information and Communication Engineering 21(8): 1560-1566 (in Korean). doi:10.6109/jkiice.2017.21.8.1560. 

  23. Lee, W. S., S. M. Park, T. W. Ban, S. H. Kim, J. Y. Ryu, and K. Y. Sung, 2018. Health monitoring of livestock using neck sensor based on machine learning. Journal of the Korea Institute of Information and Communication Engineering 22(11): 1421-1427 (in Korean). doi:10.6109/jkiice.2018. 22.11.1421. 

  24. Lee, W. S., J. Y. Ryu, T. W. Ban, S. H. Kim, S. K. Kang, Y. H. Ham, and H. J. Lee, 2018. Estimation of body core temperature of cow using neck sensor based on machine learning. Journal of the Korea Institute of Information and Communication Engineering 22(12): 1611-1617 (in Korean). doi:106109/ jkiice.2018.22.12.1611. 

  25. Lee, W. S., K. Y. Sung, T. W. Ban, and Y. H. Ham, 2020. Production performance prediction of pig farming using machine learning. Journal of the Korea Institute of Information and Communication Engineering 24(1): 130-133 (in Korean). doi:10.6109/jkiice.2020.24.1.130. 

  26. Gorczyca, M. T., H. F. M. Milan, A. S. C. Maia, and K. G. Gerbremedhin, 2018. Machine learning algorithms to predict core, skin and hair-coat temperatures of piglets. Computers and Electronics in Agriculture 151: 286-294. doi:10.1016/j.compag.2018.06.028. 

  27. Gorczyca, M. T., 2019. Machine learning applications for monitoring heat stress in livestock. Faculty of the Graduate School of Cornell University: 1-64. 

  28. Wang, Y., X. Yong, Z. F. Chen, H. Y. Zheng, J. Y. Zhuang, and J. J. Liu, 2018. The design of an intelligent livestock production monitoring and management system. 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS): 1-5 doi:10.1109/DDCLS.2018.8516021. 

  29. ASTM, Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass (Designation: D2216-10). 

  30. Hong, S. E., T. J. Park, J. I. Bang, and H. J. Kim, 2020. A study on the prediction model for tomato production and growth using ConvLSTM. The Journal of Korean Institute of Information Technology 18(1): 1-10 (in Korean). doi:10.14801/jkiit.2020.18.1.1. 

  31. Shakoor, M. T, K. Rahman, S. N. Rayta, and A. Chakrabarty, 2017. Agricultural production output prediction using supervised machine learning techniques. 2017 1st International Conference on Next Generation Computing Applications (NextComp):182-187. doi:10.1109/NEXTCOMP.2017.8016196. 

  32. Alhnaity, B., S. Pearson, G. Leontidis, and S. Kollias, 2020. Using deep learning to predict plant growth and yield in greenhouse environments. Acta Hortic 1296: 425-432. doi:10.17660/ActaHortic.2020.1296.55. 

  33. Cho, Y. H., Y. D. Seo, D. J. Park, and J. C. Jeong, 2016. Study on the activation functions for efficient learning in DNN. The Institute of Electronics and Information Engineers: 800-803 (in Korean). 

  34. Shin, H. Y., H. K. Yim, and W. T. Kim, 2018. Intelligent green house control system based on deep learning for saving electric power consumption. Institute of Korean Electrical and Electronics Engineers: 53-60 (in Korean). doi:10.7471/ikeee.2018.22.1.53. 

  35. Efron B., and R. J. Tibshirani, 1998. An Introduction to the bootstrap. Monographs on statistics and applied probability 57. London: Chapman & Hall/CHC. 

  36. Akinoglu, B. G., 1991. A review of sunshine-based models used to estimate monthly average global solar radiation. Renewable Energy 1(3): 479-497. 

  37. Bakay, M. S., and U. Agbulut, 2021. Electricity production based forecasting of greenhouse gas emissions in turkey with deep learning, Support Vector Machine and Artificial Neural Network algorithms. Journal of Cleaner Production 285: 1-18. 

  38. Gouda, S. G., Z. Hussein, S. Luo, and Q. X. Yuan, 2019. Model selection for accurate daily global solar radiation prediction in China. Journal of Cleaner Production 221: 132-144. doi:10.1016/j.jclepro.2019.02.211. 

  39. Bakirci, K. 2009. Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy 34: 485-501. doi:10.1016/j.energy.2009.02.005. 

  40. Wang, H. K., L. Li, W. Yong, M. Fanjia, H. H. Wang, and N. A. Sigrimis, 2018. Recurrent Neural Network model for prediction of microclimate in solar greenhouse. IFAC PapersOnLine 51(17): 790-795. doi : 10.1016/j.ifacol.2018.08.099. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로