$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기능성 바이오차 생산을 위한 이산화탄소의 영향 평가
Evaluation of the Effects of Carbon Dioxide on the Production of Engineered Biochar 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.27 no.2, 2022년, pp.41 - 49  

이상윤 (한양대학교 자원환경공학과) ,  이태우 (한양대학교 자원환경공학과) ,  권일한 (한양대학교 자원환경공학과)

Abstract AI-Helper 아이콘AI-Helper

To abate the environmental burdens arising from CO2 emissions, biochar offers a strategic means to sequester carbons due to its recalcitrant nature. Also, biochar has a great potential for the use as carbon-based adsorbent because it is a porous material. As such, developing the surface properties o...

주제어

표/그림 (8)

참고문헌 (32)

  1. Albanese, L., Baronti, S., Liguori, F., Meneguzzo, F., Barbaro, P., and Vaccari, F.P., 2019, Hydrodynamic cavitation as an energy efficient process to increase biochar surface area and porosity: A case study, J. Clean. Prod., 210, 159-169. 

  2. Babin, A., Vaneeckhaute, C., and Iliuta, M.C., 2021, Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review, Biomass Bioenergy, 146, 105968. 

  3. Budinis, S., Krevor, S., Dowell, N.M., Brandon, N., and H awkes, A., 2018, An assessment of CCS costs, barriers and potential, Energy Strategy Rev., 22, 61-81. 

  4. Cao, Y., Shen, G., Zhang, Y., Gao, C., Li, Y., Zhang, P., Xiao, W., and Han, L., 2019, Impacts of carbonization temperature on the Pb(II) adsorption by wheat straw-derived biochar and related mechanism, Sci. Total Environ., 692, 479-489. 

  5. Creamer, A.E., Gao, B., and Wang, S., 2016, Carbon dioxide capture using various metal oxyhydroxide-biochar composites, Chem. Eng. J., 283, 826-832. 

  6. de la Rosa, J.M., Rosado, M., Paneque, M., Miller, A.Z., and Knicker, H., 2018, Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils, Sci. Total Environ., 613-614, 969-976. 

  7. Dissanayake, P.D., Choi, S.W., Igalavithana, A.D., Yang, X., Tsang, D.C.W., Wang, C.-H., Kua, H.W., Lee, K.B., and Ok, Y.S., 2020, Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication, Renew. Sust. Energ. Rev., 124, 109785. 

  8. Kim, H.-B., Kim, J.-G., Kim, T., Alessi, D.S., and Baek, K., 2020, Mobility of arsenic in soil amended with biochar derived from biomass with different lignin contents: Relationships between lignin content and dissolved organic matter leaching, Chem. Eng. J., 393, 124687. 

  9. Kumaravel, V., Bartlett, J., and Pillai, S.C., 2020, Photoelectrochemical Conversion of Carbon Dioxide (CO 2 ) into Fuels and Value-Added Products, ACS Energy Lett., 5(2), 486-519. 

  10. Kwak, J.-H., Islam, M.S., Wang, S., Messele, S.A., Naeth, M.A., El-Din, M.G., and Chang, S.X., 2019, Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation, Chemosphere, 231, 393-404. 

  11. Lahijani, P., Mohammadi, M., and Mohamed, A.R., 2018, Metal incorporated biochar as a potential adsorbent for high capacity CO 2 capture at ambient condition, J. CO 2 Util., 26, 281-293. 

  12. Lahijani, P., Zainal, Z.A., Mohammadi, M., and Mohamed, A.R., 2015, Conversion of the greenhouse gas CO 2 to the fuel gas CO via the Boudouard reaction: A review, Renew. Sustain. Energy Rev., 41, 615-632. 

  13. Lee, D.-J., Kim, M., Jung, S., Park, Y.-K., Jang, Y., Tsang, Y.F., Kim, H., Park, K.-H., and Kwon, E.E., 2022, Direct conversion of yellow mealworm larvae into biodiesel via a non-catalytic transesterification platform, Chem. Eng. J., 427, 131782. 

  14. Lee, J., Kim, K.-H., and Kwon, E.E., 2017 Biochar as a Catalyst, Renew. Sust. Energ. Rev., 77, 70-79. 

  15. Lee, T., Jung, S., Hong, J., Wang, C.-H., Alessi, D.S., Lee, S.S., Park, Y.-K., and Kwon, E.E., 2020, Using CO 2 as an Oxidant in the Catalytic Pyrolysis of Peat Moss from the North Polar Region, Environ. Sci. Technol., 54(10), 6329-6343. 

  16. Leng, L. and Huang, H., 2018, An overview of the effect of pyrolysis process parameters on biochar stability, Bioresour. Technol., 270, 627-642. 

  17. Leng, L., Huang, H., Li, H., Li, J., and Zhou, W., 2019, Biochar stability assessment methods: A review, Sci. Total Environ., 647, 210-222. 

  18. Liu, Y., Gao, C., Wang, Y., He, L., Lu, H., and Yang, S., 2020, Vermiculite modification increases carbon retention and stability of rice straw biochar at different carbonization temperatures, J. Clean. Prod., 254, 120111. 

  19. Mai, N.T., Nguyen, M.N., Tsubota, T., Nguyen, P.L.T., and Nguyen, N.H., 2021, Evolution of physico-chemical properties of Dicranopteris linearis-derived activated carbon under various physical activation atmospheres, Sci. Rep., 11(1), 14430. 

  20. Manya, J.J., Gonzalez, B., Azuara, M., and Arner, G., 2018, Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO 2 uptake and CO 2 /N 2 selectivity, Chem. Eng. J., 345, 631-639. 

  21. Masek, O., Buss, W., Brownsort, P., Rovere, M., Tagliaferro, A., Zhao, L., Cao, X., and Xu, G., 2019, Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from soil improvement, Sci. Rep., 9(1), 5514. 

  22. Muttakin, M., Mitra, S., Thu, K., Ito, K., and Saha, B.B., 2018, Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms, Int. J. Heat and Mass Transf., 122, 795-805. 

  23. Oginni, O. and Singh, K., 2020, Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars, J. Environ. Chem. Eng., 8(5), 104169. 

  24. Qiao, Y., Zhang, S., Quan, C., Gao, N., Johnston, C., and Wu, C., 2020, One-pot synthesis of digestate-derived biochar for carbon dioxide capture, Fuel, 279, 118525. 

  25. Ramyashree, M.S., Shanmuga Priya, S., Freudenberg, N. C., Sudhakar, K., and Tahir, M., 2021, Metal-organic framework-based photocatalysts for carbon dioxide reduction to methanol: A review on progress and application, J. CO 2 Util., 43, 101374. 

  26. Rout, K.R., Gil, M.V., and Chen, D., 2019, Highly selective CO removal by sorption enhanced Boudouard reaction for hydrogen production, Catal.s Sci. Technol., 9(15), 4100-4107. 

  27. Saldarriaga, J.F., Aguado, R., Pablos, A., Amutio, M., Olazar, M., and Bilbao, J., 2015, Fast characterization of biomass fuels by thermogravimetric analysis (TGA), Fuel, 140, 744-751. 

  28. Shahkarami, S., Azargohar, R., Dalai, A.K., and Soltan, J., 2015, Breakthrough CO 2 adsorption in bio-based activated carbons, J. Enviorn. Sci., 34, 68-76. 

  29. Thakur, I.S., Kumar, M., Varjani, S.J., Wu, Y., Gnansounou, E., and Ravindran, S., 2018, Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges, Bioresour. Technol., 256, 478-490. 

  30. Wani, I., Sharma, A., Kushvaha, V., Madhushri, P., and Peng, L., 2020, Effect of pH, volatile content, and pyrolysis conditions on surface area and O/C and H/C ratios of biochar: Towards understanding performance of biochar using simplified approach, J. Hazard. Toxic and Radioact. Waste, 24(4), 04020048. 

  31. Waters, C.L., Janupala, R.R., Mallinson, R.G., and Lobban, L.L., 2017, Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects, J. Anal. Appl. Pyrolysis, 126, 380-389. 

  32. Yu, H., Wu, Z., and Chen, G., 2018, Catalytic gasification characteristics of cellulose, hemicellulose and lignin, Renew. Energy, 121, 559-567. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로