$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미량오염물질 관리를 위한 산화 및 흡착 기반 하수 방류수 강화처리 기술의 연구 동향 및 시사점
Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications 원문보기

上下水道學會誌 = Journal of Korean Society of Water and Wastewater, v.36 no.2, 2022년, pp.59 - 79  

최상기 (광주과학기술원 지구환경공학부) ,  이웅배 (광주과학기술원 지구환경공학부) ,  김영모 (한양대학교 건설환경공학과) ,  홍석원 (한국과학기술연구원 물자원순환연구센터) ,  손희종 (부산광역시 상수도사업본부 수질연구소) ,  이윤호 (광주과학기술원 지구환경공학부)

Abstract AI-Helper 아이콘AI-Helper

Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies...

주제어

참고문헌 (106)

  1. Altmann, J., Ruhl, A.S., Zietzschmann, F. and Jekel, M. (2014). Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment, Water Res., 55, 185-193. 

  2. Altmann, J., Zietzschmann, F., Geiling, E.L., Ruhl, A.S., Sperlich, A. and Jekel, M. (2015). Impacts of coagulation on the adsorption of organic micropollutants onto powdered activated carbon in treated domestic wastewater, Chemosphere, 125, 198-204. 

  3. Audenaert, W.T.M., Vermeersch, Y., Van Hulle, S.W.H., Dejans, P., Dumoulin, A. and Nopens, I. (2011). Application of a mechanistic UV/hydrogen peroxide model at full-scale: Sensitivity analysis, calibration and performance evaluation, Chem. Eng. J., 171(1), 113-126. 

  4. Beltran, F.J. (2004). Ozone Reaction Kinetics for Water and Wastewater Systems. Lewis Publishers, Boca Raton, Fla. 

  5. Benstoem, F., Nahrstedt, A., Boehler, M., Knopp, G., Montag, D., Siegrist, H. and Pinnekamp, J. (2017). Performance of granular activated carbon to remove micropollutants from municipal wastewater-A meta-analysis of pilot- and large-scale studies, Chemosphere, 185, 105-118. 

  6. Boehler, M., Zwickenpflug, B., Hollender, J., Ternes, T., Joss, A. and Siegrist, H. (2012). Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon, Water Sci. Technol., 66(10), 2115-2121. 

  7. Bourgin, M., Beck, B., Boehler, M., Borowska, E., Fleiner, J., Salhi, E., Teichler, R., Von Gunten, U., Siegrist, H. and McArdell, C.S. (2018). Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products, Water Res., 129, 486-498. 

  8. Brienza, M., Manasfi, R. and Chiron, S. (2019). Relevance of N-nitrosation reactions for secondary amines in nitrate-rich wastewater under UV-C treatment, Water Res., 162(2), 22-29. 

  9. Buffle, M. and Von Gunten, U. (2003). "The chlorine-ammonia process for enhanced bromate minimization", Proceedings of Water Quality Technology Conference, 2-6 Nov, 2003, Philadelphia, USA, American Water Works Association. 

  10. Buffle, M.O., Schumacher, J., Meylan, S., Jekel, M. and Von Gunten, U. (2006). Ozonation and advanced oxidation of wastewater: Effect of O3 dose, pH, DOM and HO.-scavengers on ozone decomposition and HO. generation, Ozone Sci. Eng., 28(4), 247-259. 

  11. Bui, X.T., Vo, T.P.T., Ngo, H.H., Guo, W.S. and Nguyen, T.T. (2016). Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications, Sci. Total Environ., 563, 1050-1067. 

  12. Cedat, B., de Brauer, C., Metivier, H., Dumont, N. and Tutundjan, R. (2016). Are UV photolysis and UV/H 2 O 2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale, Water Res., 100, 357-366. 

  13. Chen, Z., Li, M. and Wen, Q. (2017). Comprehensive evaluation of three sets of advanced wastewater treatment trains for treating secondary effluent: Organic micro-pollutants and bio-toxicity, Chemosphere, 189, 426-434. 

  14. Choi, S., Lee, Y., Kim, Y.M., Hong, S.W., Son, H. and Lee, Y. (2021). A review on status of organic micropollutants from sewage effluent and their management strategies, J. Korean Soc. Water Wastewater, 35(3), 205-225. 

  15. Chuang, Y.H. and Mitch, W.A. (2017). Effect of ozonation and biological activated carbon treatment of wastewater effluents on formation of N-nitrosamines and halogenated disinfection byproducts, Environ. Sci. Technol., 51(4), 2329-2338. 

  16. Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J. and Tchobanoglous, G. (2012). MWH's Water Treatment: Principles and Design. John Wiley & Sons. 

  17. Dodd, M.C., Kohler, H.P.E. and Von Gunten, U. (2009). Oxidation of antibacterial compounds by ozone and hydroxyl radical: elimination of biological activity during aqueous ozonation processes, Environ. Sci. Technol., 43(7), 2498-2504. 

  18. Eggen, R.I., Hollender, J., Joss, A., Scharer, M. and Stamm, C. (2014). Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants, Environ. Sci. Technol., 7683-7689. 

  19. Elovitz, M.S. and Von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The R(ct) concept, Ozone Sci. Eng., 21(3), 239-260. 

  20. Elovitz, M.S., von Gunten, U. and Kaiser, H.P. (2000). Hydroxyl Radical/Ozone Ratios During Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and DOM Properties, Ozone Sci. Eng., 22(2), 123-150. 

  21. Environmental Protection Agency (EPA). (2006). National Primary Drinking Water Regulations: Long Term 2 Enhanced Surface Water Treatment Rule; Final Rule, Federal Register 40 CFR Parts 9, 141-142. 

  22. Fundneider, T., Alonso, V.A., Wick, A., Albrecht, D. and Lackner, S. (2020). Implications of biological activated carbon filters for micropollutant removal in wastewater treatment, Water Res., 189, 116588. 

  23. Hofman-Caris, R.C.H.M., Harmsen, D.J.H., Puijker, L., Baken, K.A., Wols, B.A. Beerendonk, E.F. and Keltjens, L.L.M. (2015). Influence of process conditions and water quality on the formation of mutagenic byproducts in UV/H 2 O 2 processes, Water Res., 74, 191-202. 

  24. Hu, J., Aarts, A., Shang, R., Heijman, B. and Rietveld, L. (2016). Integrating powdered activated carbon into wastewater tertiary filter for micro-pollutant removal, J. Environ. Manage., 177, 45-52. 

  25. Hubner, U., Zucker, I. and Jekel, M. (2015) Options and limitations of hydrogen peroxide addition to enhance radical formation during ozonation of secondary effluents, J. Water Reuse Desal., 5(1), 8. 

  26. Jeong, D., Ham, S., Lee, W., Chung, H. and Kim, H. (2017). Study on occurrence and management of organic micropollutants in sewer systems, J. Korean Soc. Water Wastewater, 31(6), 551-566. 

  27. Kang, S. and Xing, B. (2005). Phenanthrene sorption to sequentially extracted soil humic acids and humins, Environ. Sci. Technol., 39(1), 134-140. 

  28. Karanfil, T. and Kilduff, J.E. (1999). Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants, Environ. Sci. Technol., 33(18), 3217-3224. 

  29. Keen, O.S. and Linden, K.G. (2013). Degradation of antibiotic activity during UV/H 2 O 2 advanced oxidation and photolysis in wastewater effluent, Environ. Sci. Technol., 47(22), 13020-13030. 

  30. Kim, I., Yamashita, N. and Tanaka, H. (2009). Performance of UV and UV/H 2 O 2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan, J. Hazard. Mater., 166(2-3), 1134-1140. 

  31. Knappe, D.R.U. (2006). Surface chemistry effects in activated carbon adsorption of industrial pollutants, Interface Sci. Technol., V(10), 155-177. 

  32. Kohler, C., Venditti, S., Igos, E., Klepiszewski, K., Benetto, E. and Cornelissen, A. (2012). Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment, J. Hazard. Mater., 239-240, 70-77. 

  33. Kolkman, A., Martijn, B.J., Vughs, D., Baken, K.A. and van Wezel, A.P. (2015). Tracing nitrogenous disinfection byproducts after medium pressure UV water treat- ment by stable isotope labeling and high resolution mass spectrometry, Environ. Sci. Technol., 49(7), 4458-4465. 

  34. Koppenol, W.H., Stanbury, D.M. and Bounds, P.L. (2010). Electrode potentials of partially reduced oxygen species, from dioxygen to water, Free Radical Biol. Med., 49, 317-322. 

  35. Kosaka, K., Asami, M., Ohkubo, K., Iwamoto, T., Tanaka, Y., Koshino, H., Echigo, S. and Akiba, M. (2014). Identification of a New N-nitrosodimethylamine precursor in sewage containing industrial effluents, Environ. Sci. Technol., 48(19), 11243-11250. 

  36. Kosek, K., Luczkiewicz, A., Fudala-Ksiazek, S., Jankowska, K., Szopinska, M., Svahn, O., Tranckner, J., Kaiser, A., Langas, V. and Bjorklund, E. (2020). Implementation of advanced micropollutants removal technologies in wastewater treatment plants (WWTPs)-Examples and challenges based on selected EU countries, Environ. Sci. Policy, 112, 213-226. 

  37. Kovalova, L., Knappe, D.R., Lehnberg, K., Kazner, C. and Hollender, J. (2013). Removal of highly polar micropollutants from wastewater by powdered activated carbon, Environ. Sci. Pollut. Res., 20(6), 3607-3615. 

  38. Krahnstover, T. and Wintgens, T. (2018). Separating powdered activated carbon (PAC) from wastewater-Technical process options and assessment of removal efficiency, J. Environ. Chem. Eng., 6(5), 5744-5762. 

  39. Lee, C., Yoon, J. and von Gunten, U. (2007). Oxidative degradation of N-nitro- sodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide, Water Res., 41(3), 581-590. 

  40. Lee, M., Zimmermann-Steffens, S.G., Arey, J.S., Fenner, K. and von Gunten, U. (2015). Development of prediction models for the reactivity of organic compounds with ozone in aqueous solution by quantum chemical calculations: The role of delocalized and localized molecular orbitals, Environ. Sci. Technol., 49(16), 9925-9935. 

  41. Lee, M., Blum, L.C., Schmid, E., Fenner, K. and von Gunten, U. (2017). A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms, Environ. Sci. Process Impacts, 19(3), 465-476. 

  42. Lee, Y., Escher, B.I. and Von Gunten, U. (2008). Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens, Environ. Sci. Technol., 42(17), 6333-6339. 

  43. Lee, Y. and Von Gunten, U. (2012). Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment, Water Res., 46(19), 6177-6195. 

  44. Lee, Y., Gerrity, D., Lee, M., Bogeat, A.E., Salhi, E., Gamage, S., Trenholm, R.A., Wert, E.C., Snyder, S.A. and von Gunten, U. (2013). Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information, Environ. Sci. Technol., 47(11), 5872-5881. 

  45. Lee, Y., Kovalova, L., McArdell, C.S. and von Gunten, U. (2014). Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent, Water Res., 64, 134-148. 

  46. Lee, Y. and von Gunten, U. (2016). Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: Reaction kinetics, transformation products, and changes of biological effects, Environ. Sci.: Water Res. Technol., 2(3), 421-442. 

  47. Lee, Y., Gerrity, D., Lee, M., Gamage, S., Pisarenko, A., Trenholm, R.A., Canonica, S., Snyder, S.A. and von Gunten, U. (2016). Organic contaminant abatement in reclaimed water by UV/H 2 O 2 and a combined process consisting of O3/H 2 O 2 followed by UV/H2O2: Prediction of abatement efficiency, energy consumption, and byproduct formation, Environ. Sci. Technol., 50(7), 3809-3819. 

  48. Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S. and Wang, X.C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ, 473, 619-641. 

  49. Magdeburg, A., Stalter, D., Schlusener, M., Ternes, T. and Oehlmann, J. (2014). Evaluating the efficiency of advanced wastewater treatment: Target analysis of organic contaminants and (geno-) toxicity assessment tell a different story, Water Res., 50, 35-47. 

  50. Mathon, B., Coquery, M., Liu, Z., Penru, Y., Guillon, A., Esperanza, M., Miege, C. and Choubert, J.M. (2021). Ozonation of 47 organic micropollutants in secondary treated municipal effluents: Direct and indirect kinetic reaction rates and modelling, Chemosphere, 262. 

  51. Mailler, R., Gasperi, J., Coquet, Y., Deshayes, S., Zedek, S., Cren-Olive, C., Cartiser, N., Eudes, V., Bressy, A., Caupos, E. and Rocher, V. (2015). Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents, Water Res., 72, 315-330. 

  52. Margot, J., Kienle, C., Magnet, A., Weil, M., Rossi, L., De Alencastro, L.F., Abegglen, C., Thonney, D., Chevre, N., Scharer, M. and Barry, D.A. (2013). Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon?, Sci. Total Environ., 461, 480-498. 

  53. Martijn, B.J., Boersma, M.G., Vervoort, J.M., Rietjens, I.M.C.M. and Kruithof, J.C. (2014). Formation of genotoxic compounds by medium pressure ultraviolet treatment of nitrate-rich water, Desalin. Water Treat., 52(34-36), 6275-6281. 

  54. Martijn, B.J., Kruithof, J.C., Hughes, R.M., Mastan, R.A., Van Rompay, A.R. and Malley, J.P. (2015). Induced genotoxicity in nitrate-rich water treated with medium-pressure ultraviolet processes, AWWA, 107(6), E301-E312. 

  55. McArdell, C.S. and Meier, A. (2019). "The Swiss approach in reducing micropollutants in wastewater", STOWA Workshop, Beating micropollutants in WWTPs, 5 Nov 2019, Amsterdam, Netherland. 

  56. Merenyi, G., Lind, J., Naumov, S. and von Sonntag, C. (2010). The reaction of ozone with the hydroxide ion: mechanistic considerations based on thermokinetic and quantum chemical calculations and the role of HO4- in superoxide dismutation, Chem. Eur. J., 16(4), 1372-1377. 

  57. Mestankova, H., Schirmer, K., Escher, B.I., von Gunten, U. and Canonica, S. (2012). Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes, Environ. Pollut., 161, 30-35. 

  58. Mestankova, H., Schirmer, K., Canonica, S. and von Gunten, U. (2014). Development of mutagenicity during degradation of N-nitrosamines by advanced oxidation processes, Water Res., 66, 399-410. 

  59. Metzger, S., Rossler, A., Turk, J., Antakyali, D., Schulz, J., Wunderlin, P. and Meier, A. (2015). Status quo der Erweiterung von Klaranlagen um eine Stufe zur gezielten Spurenstoffelimination, Wasserwirtsch, Wassertech., 14-19. 

  60. Miklos, D.B., Hartl, R., Michel, P., Linden, K.G., Drewes, J.E., and Hubner, U. (2018a). UV/H 2 O 2 process stability and pilot-scale validation for trace organic chemical removal from wastewater treatment plant effluents, Water Res., 136, 169-179. 

  61. Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E. and Hubner, U. (2018b). Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review, Water Res., 139, 118-131. 

  62. Minakata, D., Li, K., Westerhoff, P. and Crittenden, J. (2009). Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants, Environ. Sci. Technol., 43(16), 6220-6227. 

  63. Ministry of Environment (MOE). (2019a). Statistics of sewerage. 

  64. Ministry of Environment (MOE). (2019b). Evaluation of the deterioration of public sewage treatment facilities and feasibility study for improvement, 38-39. 

  65. Mitch, W.A., Sharp, J.O., Trussell, R.R., Valentine, R.L., Alvarez-Cohen, L. and Sedlak, D.L. (2003). N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review, Environ. Eng. Sci. 20(5), 389-404. 

  66. Mulder, M., Antakyali, D. and Ante, S. (2015). Costs of removal of micropollutants from effluents of municipal wastewater treatment plants-general cost estimates for the Netherlands based on implemented full scale post treatments of effluents of wastewater treatment plants in Germany and Switzerland, STOWA and Waterboard the Dommel, the Netherlands, 55. 

  67. Nam, S.W., Choi, D.J., Kim, S.K., Her, N. and Zoh, K.D. (2014). Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon, J. Hazard. Mater., 270, 144-152. 

  68. Naumov, S., Mark, G., Jarocki, A. and von Sonntag, C. (2010). The reactions of nitrite ion with ozone in aqueous solution - new experimental data and quantum-chemical considerations, Ozone Sci. Eng., 32(6), 430-434. 

  69. Padhye, L.P., Hertzberg, B., Yushin, G. and Huang, C.H. (2011). N-nitrosamines formation from secondary amines by nitrogen fixation on the surface of activated carbon, Environ. Sci. Technol., 45(19), 8368-8376. 

  70. Padhye, L., Wang, P., Karanfil, T. and Huang, C.H. (2010). Unexpected role of activated carbon in promoting transformation of secondary amines to N-nitrosamines, Environ. Sci. Technol., 44(11), 4161-4168. 

  71. Park, N. and Jeon, J. (2021). Emerging pharmaceuticals and industrial chemicals in Nakdong River, Korea: Identification, quantitative monitoring, and prioritization, Chemosphere, 263, 128014. 

  72. Pesqueira, J.F., Pereira, M.F.R. and Silva, A.M. (2020). Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: A review, J. Clean. Prod., 261, 121078. 

  73. Pines, D.S. and Reckhow, D.A. (2002). Effect of dissolved cobalt(II) on the ozonation of oxalic acid, Environ. Sci. Technol. 36(19), 4046-4051. 

  74. Ra, J., Yoom, H., Son, H. and Lee, Y. (2020). Occurrence and transformation of gabapentin in urban water quality engineering: Rapid formation of nitrile from amine during drinking water chlorination, Water Res., 184, 116123. 

  75. Rahman, S.M., Eckelman, M.J., Onnis-Hayden, A. and Gu, A.Z. (2018). Comparative life cycle assessment of advanced wastewater treatment processes for removal of chemicals of emerging concern, Environ. Sci. Technol., 52(19), 11346-11358. 

  76. Rice, R.G., Robson, C.M., Miller, G.W. and Hill, A.G. (1981). Uses of ozone in drinking water treatment, AWWA, 73(1), 44-57. 

  77. Rizzo, L., Malato, S., Antakyali, D., Beretsou, V.G., Dolic, M.B., Gernjak, W., Heath, E., Ivancev-Tumbas, I., Karaolia, P., Ribeiro, A.R.L. and Fatta-Kassinos, D. (2019). Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater, Sci. Total Environ., 655, 986-1008. 

  78. Rosario-Ortiz, F.L., Wert, E.C. and Snyder, S.A. (2010). Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater, Water Res., 44(5), 1440-1448. 

  79. Rosenfeldt, E.J., Chen, P.J., Kullman, S. and Linden, K.G. (2007). Destruction of estrogenic activity in water using UV advanced oxidation, Sci. Total Environ., 377(1), 105-113. 

  80. Schwaller, C., Hoffmann, G., Hiller, C.X., Helmreich, B. and Drewes, J.E. (2021). Inline dosing of powdered activated carbon and coagulant prior to ultrafiltration at pilot-scale-Effects on trace organic chemical removal and operational stability, Chem. Eng. J., 414, 128801. 

  81. Semitsoglou-Tsiapou, S., Templeton, M.R., Graham, N.J.D., Mandal, S., Leal, L.H. and Kruithof, J.C. (2018). Potential formation of mutagenicity by low pressure-UV/H2O2 during the treatment of nitrate-rich source waters, Environ. Sci.: Water Res. Technol., 4(9), 1252-1261. 

  82. Shah, A.D., Dotson, A.D., Linden, K.G. and Mitch, W.A. (2011). Impact of UV disinfection combined with chlorination/ chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water, Environ. Sci. Technol., 45, 3657-3664. 

  83. Sharpless, C.M. and Linden, K.G. (2003). Experimental and model comparisons of low- and medium-pressure Hg lamps for the Direct and H 2 O 2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water, Environ. Sci. Technol., 37(9), 1933-1940. 

  84. Sigmund, G., Gharasoo, M., Huffer, T. and Hofmann, T. (2020). Deep learning neural network approach for predicting the sorption of ionizable and polar organic pollutants to a wide range of carbonaceous materials, Environ. Sci. Technol., 54(7), 4583-4591. 

  85. Son, H., Yoo, S.J., Roh, J.S. and Yoo, P.J. (2009). Biological activated carbon (BAC) process in water treatment, J. Korean Soc. Environ. Eng., 31(4), 308-323. 

  86. Son, H. and Jang, S. (2011). Occurrence of residual pharmaceuticals and fate, residue and toxic effect in drinking water resources, J. Korean Soc. Environ. Eng., 33(6), 453-479. 

  87. Son, H., Choi, S., An, B., Lee, H. and Yoom, H.S. (2021). Effect of changes in physical properties of granular activated carbon (GAC) on the adsorption of natural organic matter (NOM) with increasing the number of thermal regeneration: Pore size and NOM molecular weight, J. Korean Soc. Environ. Eng., 43(7), 537-546. 

  88. Staehelin, J. and Hoigne, J. (1985). Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions, Environ. Sci. Technol., 19(12), 1206-1213. 

  89. Stalter, D., Magdeburg, A. and Oehlmann, J. (2010b). Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery, Water Res., 44(8), 2610-2620. 

  90. Stalter, D., Magdeburg, A., Weil, M., Knacker, T. and Oehlmann, J. (2010a). Toxication or detoxication? In vivo toxicity assessment of ozonation as advanced wastewater treatment with the rainbow trout, Water Res., 44(2), 439-448. 

  91. Stefan, M.I. and Bolton, J.R. (2002). UV direct photolysis of N-nitrosodimethylamine (NDMA): kinetic and product study, Helv. Chim. Acta, 85 (5), 1416. 

  92. Streicher, J., Ruhl, A.S., Gnirss, R. and Jekel, M. (2016). Where to dose powdered activated carbon in a wastewater treatment plant for organic micro-pollutant removal, Chemosphere, 156, 88-94. 

  93. Tong, Y., McNamara, P.J. and Mayer, B.K. (2019). Adsorption of organic micropollutants onto biochar: a review of relevant kinetics, mechanisms and equilibrium, Environ. Sci. Water Res. Technol., 5(5), 821-838. 

  94. von Gunten, U. (2003). Ozonation of drinking water: part I. Oxidation kinetics and product formation, Water Res., 37(7), 1443-1467. 

  95. von Gunten, U. and Oliveras, Y. (1998). Advanced oxidation of bromide- containing waters: bromate formation mechanisms, Environ. Sci. Technol., 32, 63-70. 

  96. von Sonntag, C. and von Gunten, U. (2012). Chemistry of Ozone in Water and Wastewater Treatment. IWA Publishing, London. 

  97. Wildhaber, Y.S., Mestankova, H., Schaerer, M., Schirmer, K., Salhi, E. and von Gunten, U. (2015). Novel test procedure to evaluate the treatability of wastewater with ozone, Water Res., 75, 324-335. 

  98. Woermann, M. and Sures, B. (2020). Ecotoxicological effects of micropollutant-loaded powdered activated carbon emitted from wastewater treatment plants on Daphnia magna, Sci. Tot. Environ., 746, 141104. 

  99. Wols, B.A. and Hofman-Caris, C.H.M. (2012). Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water, Water Res., 46 (9), 2815-2827. 

  100. Worch, E. (2012). Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, Walter de Gruyter. 

  101. Yu, H.W., Anumol, T., Park, M., Pepper, I., Scheideler, J. and Snyder, S.A. (2015). On-line sensor monitoring for chemical contaminant attenuation during UV/H 2 O 2 advanced oxidation process, Water Res., 81, 250-260. 

  102. Zhang, K., Zhong, S. and Zhang, H. (2020). Predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons, and resins with machine learning, Environ. Sci. Technol., 54(11), 7008-7018. 

  103. Zietzschmann, F., Altmann, J., Hannemann, C. and Jekel, M. (2015). Lab-testing, predicting, and modeling multi-stage activated carbon adsorption of organic micro-pollutants from treated wastewater, Water Res., 83, 52-60. 

  104. Zietzschmann, F., Aschermann, G. and Jekel, M. (2016). Comparing and modeling organic micro-pollutant adsorption onto powdered activated carbon in different drinking waters and WWTP effluents, Water Res., 102, 190-201. 

  105. Zietzschmann, F., Worch, E., Altmann, J., Ruhl, A.S., Sperlich, A., Meinel, F. and Jekel, M. (2014). Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater, Water Res., 65, 297-306. 

  106. Zimmermann, S.G., Wittenwiler, M., Hollender, J., Krauss, M., Ort, C., Siegrist, H. and von Gunten, U. (2011). Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: micropollutant oxidation, by-product formation and disinfection, Water Res. 45(2), 605-617. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로