$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

지반 보간을 위한 지반정보DB 구축 방법에 따른 액상화 평가 결과 비교
Comparison of Liquefaction Assessment Results with regard to Geotechnical Information DB Construction Method for Geostatistical Analyses 원문보기

韓國地盤工學會論文集 = Journal of the Korean geotechnical society, v.38 no.4, 2022년, pp.59 - 70  

강병주 ((주)건화 지반터널부) ,  황범식 (한국도로공사 도로교통연구원 안전혁신연구실) ,  방태완 (단국대학교 토목환경공학과 통합과정) ,  조완제 (단국대학교 토목환경공학과)

초록
AI-Helper 아이콘AI-Helper

지진으로부터 상대적으로 안전지대라고 여겨졌던 한반도에서 2017년 규모 5.4의 강진이 포항지역에 발생함으로써 액상화 현상이 민가, 농지에서 광범위하게 나타났고 이에 액상화 현상을 예측하는 액상화 재해도 작성에 관한 연구수요가 높아지고 있다. 액상화 현상이란 느슨한 사질토에서 지진과 같은 큰 동적응력이 짧은 시간 작용할 때 과잉간극수압의 급격한 증가로 지반의 강도가 완전히 상실되는 현상을 의미한다. 액상화는 액상화 가능지수(liquefaction potential index, LPI)를 통해 평가할 수 있지만 LPI는 단일 시추공 별로 산출되기 때문에 해당지역의 대표성에 대한 문제가 발생하게 된다. 이러한 대표성의 문제는 지리정보시스템(geographic information system, GIS)을 활용한 공간보간을 통해 보완될 수 있다. 따라서 본 연구에서는 지구통계학적인 공간보간 기법 중 하나인 크리깅(kriging)을 활용하여 지반정보의 대표성 문제를 해결하고자 하였으며 액상화 평가를 위한 지반정보DB를 구축하고자 하였다. 또한 구축된 지반정보DB를 활용하여 재현주기 별 액상화 재해도를 작성하였으며 액상화 재해도 결과는 교차검증을 통하여 정밀도 검증을 수행하였다.

Abstract AI-Helper 아이콘AI-Helper

There is a growing interest in evaluating earthquake damage and determining disaster prevention measures due to the magnitude 5.8 earthquake in Pohang, Korea. Since the liquefaction phenomena occurred extensively in the residential area as a result of the earthquake, there was a demand for research ...

주제어

표/그림 (7)

참고문헌 (27)

  1. Baise, L. G., Higgins, R. B., and Brankman, C. M. (2006), Liquefaction Hazard Mapping-Statistical and Spatial Characterization of Susceptible Units, Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.6, pp.705-715. 

  2. Boulanger, R. W. and Idriss, I. M. (2004), State Normalization of Penetration Resistance and the Effect of Overburden Stress on Liquefaction Resistance, Proceedings 11th SDEE and 3rd ICEGE, Uni of California, Berkeley, CA. 

  3. Chiasson, P., Lafleur, J., Soulie, M., and Law, K. T. (1995), Characterizing Spatial Variability of a Clay by Geostatistics, Canadian Geotechnical Journal, Vol.32, No.1, pp.1-10. 

  4. Douglas, B. J., Olson, R. S., and Martin, G. R. (1981), Evaluation of the Cone Penetrometer Test for SPT Liquefaction Assessment, Session on In Situ Testing to Evaluate Liquefaction Susceptibility, ASCE National Convention, St. Louis, MO, October. 

  5. Gang, B. J., Hwang, B. S., Park, H. W., and Cho, W. J. (2018), Optimal Input Database Construction for 3D Dredging Quantification, Journal of the Korean Geo-Environmental Society, Vol.19, No.5, pp.23-31. 

  6. Hough, B. K. (1969), Basic soils engineering, Ronald Press, New York. 

  7. Idriss, I. M. (1999), An update to the Seed-Idriss simplified procedure for evaluating liquefaction potential, TRB Workshop on New Approaches to Liquefaction, Publication No. FHWARD-99-165, Federal Highway Administration, January. 

  8. Idriss, I. M. and Boulanger, R. W. (2003), Relating Kα and Kσ to SPT blow count and t o CPT tip resistance for use in evaluating liquefaction potential, in Proceedings of the 2003 Dam Safety Conference, ASDSO, September 7-10, Minneapolis, MN. 

  9. Idriss, I. M. and Boulanger, R. W. (2008), Soil Liquefaction during Earthquakes, Earthquake Engineering Research Institute, Califonia, USA. pp.1. 

  10. Iwasaki, T., Tatsuoka, K., Tokida, F., and Yasuda, S. (1978), A Practical Method for Assessing Soil Liquefaction Potential based on Case Studies at Various Sites in Japan, Proceedings of 2nd International Conference on Microzonation, National Science Foundation UNESCO, San Francisco, CA., pp.885-896. 

  11. Jaksa, M. B., Kaggwa, W. S., and Brooker, P. I. (1993), Geo-statistical Modelling of the Spatial Variation of the Shear Strength of a Stiff, Overconsolidated Clay, Probabilistic Methods in Geotechnical Engineering, pp.185-194. 

  12. Kang, B. J. (2019), Geotechnical Information DB Construction Method for Liquefation Assessment, master's thesis of Dankook University, pp.43-63. 

  13. Kim, I. and Lee, J. (2018), Influencing Factor Analysis on Groundwater Level Fluctuation Near River, Ecology and Resilient Infrastructure, Vol.5, No.2, pp.72-81. 

  14. Korea Geotechnical Society (2018), Manuals on Structural Foundation Design Criteria (established by Ministry of Land, Infrastructure, and Transport, pp.826-837. 

  15. Luna, R. and Frost, J. D. (1998), Spatial Liquefaction Analysis System, Journal of Computing in Civil Engineering, Vol.12, No.1, pp.48-56. 

  16. Parsons, R. L. and Frost, J. D. (2002), Evaluating Site Investigation Quality Using GIS and Geostatistics, Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.6, pp.451-461. 

  17. Seed, H. B. (1983), Earthquake Resistant Design of Earth Dams in Proceedings, Symposium on Seismic Design of Embankments and Caverns, Pennsylvania, ASCE, NY, pp.41-64. 

  18. Seed, H. B. and Idriss, I. M. (1971), Simplified Procedure for Evaluating Soil Liquefaction Potential, J. Soil Mechanics and Foundations Div. ASCE, 97(SM9), pp.1249-1273. 

  19. Seed, H. B. and Idriss, I. M. (1981), Evaluation of Liquefaction Potential of Sand Deposits Based on Observations of Performance in Previous Earthquakes, Session on In SituTesting to Evaluate Liquefaction Susceptibility, ASCE National Convention, St. Louis, MO, Oct ober. 

  20. Seed, H. B., Tokimatsu, K., Harder, L. F. Jr., and Chung, R. (1984), The Influence of SPT Procedures on Soil Liquefaction Resistance Evaluations, Report No. UCB/EERC-84/15. Earthquake Engineering Research Center, University of California at Berkeley. 

  21. Seed, H. B., Tokimatsu, K., Harder, L. F. Jr., and Chung, R. (1985), Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations, J. Geotechnical Eng., ASCE, Vol.111, No.12, pp.1425-1445. 

  22. Sitharam, T. G. and Samui, P. (2007), Spatial Variability of SPT Data Using Ordinary and Disjunctive Kriging, ISGSR2007 First international Symposium on Geotechnical Safety and Risk, pp.253-264. 

  23. Song, Y. W., Chung, C. K., Park, K. H., and Kim, M. G. (2018), Assessment of Liquefaction Potential Using Correlation between Shear Wave Velocity and Normalized LPI on Urban Areas of Seoul and Gyeongju, Journal of The Korean Society of Civil Engineers, Vol.38, No.2, pp.357-367. 

  24. Soulie, M., Montes, P., and Silvestri, V. (1990), Modelling Spatial Variability of Soil Parameters, Canadian Geotechnical Journal, Vol.27, No.5, pp.617-630. 

  25. Yoo, S. D., Kim, H. T., Song, B. W., and Lee, H. K. (2005), Assessment of Liquefaction Potential on Non-Plastic Silty Soil Layers Using Geographic Information System (GIS) and Standard Penetration Test Results, Journal of the Korean Geoenvironmental Society, Vol.6, No.2, pp.5-14. 

  26. Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Harder, L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B., and Stokoe, K. H. (2001), Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, J. Geotechnical and Geoenvironmental Eng., ASCE, 127(10), pp.817-833. 

  27. Zhou, S. (1980), Evaluation of the Liquefaction of Sand by Static Cone Penetration Test, 7th World Conference on Earthquake Engineering, Istanbul, Turkey, Vol.3, pp.156-162. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로